
 1

Always Follow the Instructions: Rules and Rule

Following in Visual Art

Acknowledgements

I wish to thank my research supervisors, Neil Cummings, Dr Tom Corby and

Professor Roger Wilson for their support and assistance in the preparation of

this thesis.

Thanks also to the staff of Chelsea College of Art and Design’s Research

Office.

There were many anonymous programmers on obscure lists who helped me

along knowingly, or not. I am grateful to them all.

My brief work with Simon at www.hitherto.net bore Noumena.

I don’t think I would have made it without my partner Helen, even though she

disowns all responsibility.

http://www.hitherto.net/

 2

For the memory of GVMC

 3

Contents

Abstract..…………………………………………………….…………….………...8

Methodology

1. Introduction: Key Terms…..…………………………...…..…………….…9

2. Preliminary..…………………………….…………………………………..11

3. Why?....………………………………….………………………………….13

4. What?…..………………………….…….…………….…………….……...13

5. How?…………………………………….………………………………….15

Chapter 1: Introduction

1. Introduction. Text Machine: a working definition…………………….….19

2. Contexts:..……………………………….……………………………...…..22

(I) Visual Art: Instructions and Text.……………………….………..…23

(II) Electronic Literatures.……………………………………………...26

(III) Computers (Software).…..…………………………………………28

(IV) Research..…………………………………………………….…..31

3. Conclusion………………………………………………………….………33

 4

Chapter 2: Text Machine

1. Introduction…………………………………………………………………34

2. Text Machine (Real Machine)…………………………………………….38

3. Machines, Discrete and Universal………………………………………..40

4. Peirce’s Theorematic Reasoner and

Chomsky’s Finite Automaton …………………………………………….41

5. Text machine – Turing Machine?……………………………………..….43

6. Between a Turing and an Abstract Machine?……………………….….44

7. Several Machines of Conceptualism………………………………….…46

8. Loosely Related..……………………………………………………….….50

9. Conclusion……………………………………………………………….…53

Appendix to Chapter 2…………………………………………………………….54

Chapter 3: Instructions Rule

1. Introduction……………………………………...……………………….…58

2. “Post-Medium”….…………………………………………………………..59

3. Post-Mechanical……………………………………………………………60

4. The Problem With Rules…………………………………………………..63

5. Conclusion………………………………………………...………………..68

Chapter 4: Inscriptions

1. Introduction……………………………………………………….………...71

2. Text Degeneration? ……………………………….………………………72

3. Reverse-Engineering a Text…….………………………….……….……75

4. ‘About typing characters from a picture’………………….……………..78

5. Real-World Scenarios……………………………………………………..84

6. Conclusion………………………………………………………………….86

 5

Chapter 5: Code

1. Introduction………………………..…….……………………………….…87

2. Code and “The Code”………………………………….…………….……90

3. Code and Self-Reflexivity……………………………….…………….….94

4. Programs and Performances……………………………….…………..101

5. Conclusion……………………………….……………………………….107

Chapter 6: A Typology of Text Machines

Introduction……………. ………..…….……………………………….…108

1. Substitution Machine……………………………….……………….……110

2. Manipulation Machine……………………………….…………………...114

3. Generative Machine……………………………….……………………..122

4. Other……………………………….………………………………………125

Chapter 7: Conclusion: Ouroboros..…..………..……………….………….127

Future Research..….…….…..…………….…………………………..…….…131

Bibliography..……..…………………………………………………….……….133

Selected Websites……………..……………….……………………….……..155

 6

List of Appendices:

Appendix: Evidence of Work 1

 Computer Poetry’s Neglected Debut..…………………………………..157

Appendix: Evidence of Work 2

 Markov Chain Algorithms

 (A not very technical explanation)....……………………….……………174

Appendix: Evidence of Work 3

 The Ghosts of Cybernetics..……………………………….………….…179

Appendix: Evidence of Work 4

 Programs..….……………………………………….………………….….182

Appendix: Evidence of Work 5

 (Markovised thesis text)....…………………………….………………….208

Appendix: Evidence of Work 6

 CD: A Representation of www.in-vacua.com

http://www.in-vacua.com/

 7

List of Illustrations

Plate 1 Swift’s Writing Machine, 18th Century, French.

Plate 2 Writing Machine, Daniel Libeskind.

Plate 3 Untitled (2000) Wayne Clements.

Fig 1 Noumena/Reality.

Plate 4 Automated Beacon, Thomson and Craighead (2005).

Plate 5 MSN character picture.

Plate 6 src (2005) Wayne Clements.

Plate 7 Alt_Img_Tate (2005) Wayne Clements.

Plate 8 Alt_Img_Tate (2005) Wayne Clements.

Plate 9 Programmer (2003) Wayne Clements.

Plate 10 Hypograms (2003) Wayne Clements.

Plate 11 Art-Strike (2004) Wayne Clements.

Plate 12 Microsoft’s Spelling and Grammar.

 8

ABSTRACT

– THE UNIVERSITY OF THE ARTS

– ABSTRACT OF THESIS submitted by Wayne Clements

– FOR THE DEGREE OF DOCTOR OF PHILOSOPHY, FINE ART and

entitled

– Always Follow the Instructions: rules and rule following in visual art.

– MONTH AND YEAR OF SUBMISSION: OCTOBER 2005

The thesis examines the role of instructions in art by developing a theory of a

text machine.

This machine is explored through a discussion of its rules and instructions and

its codes and inscriptions.

The text machine is defined independently of particular instances of its

making, of specific technologies, but for the practice part of this submission

text machines are simulated by computer. This occasions a discussion of the

impact of one machine (the computer) upon another machine, the text

machine. This became my research question. This question is posed in this

form:

“What is the impact of the computer on the text machine?”

A complex response to this question is developed by a discussion of rules and

instructions, codes and inscriptions and their interrelationships. Larger

questions are also raised, such as the use of text machines in day-to-day

situations.

 9

Methodology

1. Introduction: Key Terms

I use the term “text machine” in this thesis. What is this entity?

First of all, it is “text machine”, not “writing machine”, to distinguish it from

gadgets with keyboards and so on, used to write, such as the typewriter. The

use of the term “writing machine”, in fact, goes all the way back to the

typewriter’s invention and first use. So Mark Twain (1906), an early typewriter

owner, used the phrase to refer to his machine: THE FIRST WRITING-

MACHINES (a memoir of his first “type-machine”, as he also called it, of the

year 1875).

I am interested in a machine at the same time as real but also more elusive.

What I mean by text machine emerges from what follows. For the moment,

the machine may be understood as a machine that…writes a text. This

machine, it will turn out, is in essence the rules and instructions required to

make a text.

These two terms, rules and instructions, also require elucidation. No easy

definition is possible, as emerges in the discussion that follows in this thesis.

Several reasons for this difficulty are explored in Chapter 3. A working

definition is: rule is the injunction, the something to be done; instruction is

the ‘how to do it’.

The terms computer and its code cannot pass without comment. My

understanding of a computer, it will quickly become apparent, is not specific to

a particular brand, or type of operating system. The discussion is pitched at a

 10

higher degree of abstraction: the computer here is a model of a machine and

is contrasted throughout with my text machine.

Code has several meanings and many connotations that go beyond a narrow

definition of computer code. The connection between the latter and forms of

social code is explored (particularly Chapter 5). The computer code I know is

Perl. However, I do not engage in prolonged discussion of specific codes. I

return to this issue in Chapter 1.3 (III).

What is a text is also not unproblematic, although it might seem almost self-

evident. This thesis adopts a rather functional definition of a text as a

“character string in the ASCII mode”. This may seem quite indifferent to

issues of meaning or interpretation, or the question of what is a text, its

boundaries, such as is explored, for instance, by Jacque Derrida (1979) in

Living On: Border Lines. A text is here, “a differential network, a fabric of

traces referring endlessly to something other than itself, to other differential

traces” (p. 84). My adoption of the far more functional definition of a character

string, however, is derived primarily from the experience of programming text

machines for the computer. However, such texts will prove no less hard to

demarcate.

The nature of this text does not go unquestioned. The thesis raises issues

about its own identity. (This is most explicit where the question of mechanical

authorship is explored). The method I adopt is at points to perform this

‘question of the text’. In Fine Art PhDs this sort of strategy is not

unprecedented. Thus Joan Turner and Darryl Hocking (2004) can claim: “It

may be that the performance of writing in the visual arts dissertation is one of

the foremost contemporary examples of academic writing, where opaque or

playful modes of writing are valued” (p. 157). This notion of play appears in

the next section that discusses some ideas of Gilles Deleuze concerning

historical periods.

My thesis intersects with Deleuze at several points. Deleuze, as a cursory

reading will reveal, is interested in many subjects shared by this thesis: codes,

 11

rules, machines, Markov processes. Shared interests, however, do not mean

shared opinions, as we are no doubt all well aware. Rather than adopt

Deleuze’s periodisation uncritically, I use it now to dramatise my own recent

development.

2. Preliminary

In his Postscript On Control Societies Deleuze (1995) proposes a

periodisation of history into:

1. Sovereign Societies

2. Disciplinary Societies

3. Control Societies

These are roughly sequential. (I say roughly, because Deleuze is too subtle a

commentator to lapse into a reprise of the crudities of Stalinist ‘stages’ theory.

Deleuze fortifies his model against this charge by allowing for the possibility of

the coexistence of different models of organisation, a subtlety sometimes

foreign to his epigones. Nevertheless, we are, according to Deleuze, living in

a Control Society).

Following Foucault, according to Deleuze, Control Societies have superseded

(since around the Second World War) the Disciplinary Societies of the

eighteenth and nineteenth centuries with their “sites of confinement”. Power is

no longer primarily articulated by physical incarceration but by the codes, the

passwords, which determine access to knowledge.

These latter societies are, according to Deleuze, associated respectively with

different forms of technology. Sovereign Societies: levers, pulleys, clocks.

Disciplinary: thermodynamic (which I take to mean engines and motors:

steam, internal combustion, electrical). Control: “information technology and

computers” (p. 180).

 12

Looking back, I might conceive of my research as a headlong recapitulation in

miniature of external developments – one on fast-forward, with stages

comically accelerated as in a silent movie chase. Thus, I began by making a

text machine. At that time I did not even conceive it that way. It was literally

clockwork. It had a wind-up motor borrowed from a child’s toy. The clockwork

device was soon replaced by an electric motor (see Plate 3). In turn these

mechanically simple machines were supplanted by digital computers

programmed to perform more complex processes.

My thesis overwhelmingly deals with the final phase. A bias reflected in my

research question (above).

The possibility of alternative forms of text machine largely remains just that, a

possibility, one that serves to make the point: a text machine may be made as

many different machines.

My research might appear to relive other histories in its course. I began with

programming relatively simple text processes on my desktop computer. One

of the first of these was literally from the early days of computing, as it was a

remake of a 1960’s artwork. I went from this ‘template’ (fill the gaps) approach

to more complex methods of text generation in a few short hops (see Chapter

6). I went from programming at the command line to programming a website

in a similarly brief period.

Does ontogenesis recapitulate phylogenesis? Does my own development in

computing (ontogenesis) repeat that of computing in general (phylogenesis)?

I think here I must refuse this, and any further possible, isomorphic figures

whether borrowed from biology or elsewhere. My development was uneven

and mixed (but not for the same reasons or in the same way that the world

economy exhibits combined and mixed development in Trotskyist theory: I

must refuse this final scenario along with the others). There were sudden

developments followed by periods of apparent regression as some old

 13

problem returned for consideration. I made progress in one area, whilst others

lagged behind. I could benefit from the example of others’ work; at other times

I was working alone. As a result, my progress was uniquely my own.

3. Why?

I began with a wish to investigate some possible uses of instructions in art.

My interest in the text machine grew from this. What began as an untried

speculation – that it might be possible to program some of these machines for

computer – grew into the project described in this thesis. In fact, it became the

main discussion of my research, and the question my research seeks to

answer:

“What is the impact of the computer on the text machine?”

This turned out to have a rather complex reply.

4. What?

What should a methodology do in the arts? What should my methodology

achieve, what is it for?

The second question reasonably requires answer (the first exceeds my task);

there are several possible replies. These are ranked in what I consider a

descending order of difficulty:

1. My methodology should provide a procedure for mechanically

producing the rules sets and instructions for new text machines.

 14

2. My methodology should enable me to prove if there is a text machine

that produced a particular piece of writing.

3. My methodology should tell us how to evaluate the worth of the writing

and the machine that made it.

4. My methodology should provide a theory of what a text machine might

be. (This in turn should allow me to make an answer to my research

question).

The fourth is what my thesis seeks to achieve. The other three, in my opinion

are, for differing reasons all, fundamentally, unanswerable but not equally

interesting to discuss.

The first (“a procedure for mechanically producing the rules sets and

instructions for new text machines”) seems to be a holy grail of anyone

interested in instructions in this area: a rule set that can produce new rule

sets: a machine of machines. Presumably this machine might also be able to

produce itself. It would itself be a machine, and if it can make machines it

might make itself, or produce the rule for its own production. But this seems

self-contradictory. How could it have produced itself? If it did not, then it will

be incomplete as it did not write itself, and is not the machine that may

produce all text machines.

A formula that would enable one to produce work endlessly is more than can

reasonably be expected in the arts. Yet in a sense, this thesis can claim to

provide a means to the production of some text machines, although not all.

The machines in Chapter 6, for instance, were made in regard of this thesis

and contribute to it: this thesis may in this qualified sense be thought of as a

text machine.

The second (“to prove if there is a text machine that produced a particular

piece of writing”) is also insoluble perhaps. It is a question I engage with.

However, I do not think it productive of a truly useful answer in most cases. A

text machine both writes and is written. Authorship here is going to be

complex. Furthermore, the evidence of whom or what writes is usually not

 15

available, only the texts are available and we cannot work back to the hand

(silicon chip?) of the author. I talk about this in Chapter 4.

The third (“how to evaluate the worth of the writing and the machine that

made it”) is a serious question for those interested in writing, machines, and

how to evaluate them. I have not attempted to answer the conundrum

seriously. The reasons for this are in the text: my response has been rather to

evaluate the significance of the question. My opinion of this question is that it

is, basically, a controversy about the value of the human versus the artificial.

Couched in such terms, I do not think it answerable for those determined to

advance one side against another. It is, in other words, an ethical and

aesthetic matter and cannot itself be turned into a mechanically performable

procedure.

The fourth (“a theory of what a text machine might be”) is developed over the

course of my thesis. It is, in my view, at least interestingly answerable. We do

not have anything like a developed theory of a text machine. We have (it will

be seen) the use of a phrase, or several related phrases. If my thesis

succeeds in being this theory, it is a step forward. A thesis that provides a

theory in a previously untheorised area can make a claim to have made a

contribution to theory. What I have done is to develop some of the concepts

and issues that are relevant to a study: these are the text machine, its rules,

instructions, codes, and inscriptions; these are explored in some detail,

getting approximately a chapter each.

This is what I aimed to accomplish. How did I hope to do it?

5. How?

The way I decided to explore the text machine was to make some machines. I

did not, as I explain in the Introduction to this thesis, choose to make

machines with motors and gears and sprockets. Instead, I learnt computer

 16

programming, at least enough to program my machine. This approach began

as a method of testing my claims: if I could program a text process, it was a

text machine. Whatever the difficulties and doubts that might attach to this

method, the method itself became a subject of investigation and interest; it

became the basis of my research question, “what is the impact of the

computer on the text machine?” This question came to involve a discussion of

many things, such as instructions and program, text and code.

Essentially, what I did was to make work that engaged with the issues I

encountered in my research and then reflect upon and evaluate the results. I

placed the more successful results on my website (www.in-vacua.com). I

made work and documented it. I presented work in public (at CHArt 2004 –

see Appendix 1). I exposed it to peer review (by successfully submitting work

to online software art groups, Rhizome.org and runme.org). I wrote and

submitted to journals articles concerning issues related to my work (see

Appendices).

These processes and events predictably gave rise to new questions and this

in turn prompted new work. This was a relatively unstable process, as work

changed ideas and ideas work.

However, this instability in a research process is not unprecedented and

conforms to one (there are three: the “positioning of a practice”, the

“theorising of a practice” and the “revealing of a practice”) in Katy Macleod’s

(2004) list of types of practice-based research in art and design. Of the

revealing of a practice she writes:

“Thus, the written text was instrumental to the conception of the art projects
but the art projects themselves exacted a radical rethinking of what had been
constructed in written form because the process of realising or making artwork
altered what had been defined in written form.” (No page numbering).

This “seesaw” process is one familiar to me, as my increasing involvement in

computers led me into investigations I had not dreamt of not long before. The

consequences of this process appear in the body of the thesis.

http://www.in-vacua.com/

 17

The process of finding out what others had done in programming text

machines, programming my own, and trying to understand what the machines

were, lead me to write the typology in Chapter 6. These concepts were

produced by my investigation: they are abstractions – and have a generality

because of that. But they are also “real abstractions” in Peter Osborne’s

(2004) phrase: abstractions of reality derived from an investigation of realities.

These in turn are productive of knowledge as they enable me to make sense

of the confusing epiphenomenona that is machine text. Furthermore, the work

I now make and will make in the future will be made in the light of this

advance in my understanding of my subject. In other words, how I work is

informed by the development in my theoretical perspective that was itself the

product of my making work and thinking about it.

Carole Gray and Julian Malins (1993) in their, Research

Procedures/Methodology for Artists & Designers suggest that methodology is

necessary if meaningful research is to be carried out, and that this

methodology be rigorous, accessible, transparent and transferable. At the

same time they note there “are no well-defined strategies on which

researchers can draw” in the arts (p. 2). Things may have improved a little in

the years since this paper was written, but I was unable to draw on an already

developed, clearly defined system of inquiry in my research. I had to try to

develop my own.

The approach of exploring a problem, familiarising myself with it, producing

my own work and deriving a comprehension of the subject is one that

recurred throughout my practice. This thesis is the accumulation of such

insights. Its reflections upon the outcomes of research activity meet the

criteria Gray and Malins demand.

My way of working usually meant identifying a technique for making a text,

then undertaking background work on this approach. I then would find

computer programs, if available, that made these sorts of texts. Then I would

try to program my work. For instance, with the Markov chain algorithm, there

was no off the peg solution to my problem, in the shape of a complete

 18

program I could use. So I had to write the program myself using an algorithm I

had found. Once I understood how it worked, I could make variants of my

machine and go on from this base to write about the subject1.

From piecemeal making I have moved on to the development of a system of

methods, of principles that, for Gray and Malins, constitute a methodology.

Possibly I was slightly assisted because my project veers somewhat towards

science subjects. (This is reflected in the fairly large number of scientists in

my bibliographical references). Certainly, I was able to set myself a task – and

carry it out in most cases. I do not suggest, however, that the results in this

thesis can meet the criteria of provability and repeatability that may be

associated with the best scientific findings. Nevertheless, the research has

value.

1
 See Appendix 4.

 19

Indeed, a writing machine can be a tool…but it does not have to be
 Martin Heidegger

Chapter 1: Introduction

1. Text Machine: a working definition

As Richard Bailey (1974) acknowledged, quite a long time ago, it is

established that nearly everyone who writes about machines that write starts

with Jonathan Swift’s (satirical) 1726 description of the Grand Academy of

Lagado. Inserting this thesis into that tradition, I do the same, but with the

purpose of giving an idea of what I mean by ‘text machine’. The Lagadonian’s

machine was “mechanical not electronic” (Bailey op. cit. p. 283). Essentially it

consisted of fixed syntactic structures and a randomising process for the

contents, some idea of which may be gained from the illustration that is Plate

1. This is Swift’s description:

“It was Twenty Foot square, placed in the Middle of the Room. The
Superficies was composed of several Bits of Wood, about the Bigness of a
Dye, but some larger than others. They were all linked together by slender
Wires. These Bits of Wood were covered on every Square with Paper pasted
on them, and on these Papers were written all the Words of their Language, in
their several Moods, Tenses, and Declensions, but without any Order. The
Professor then desired me to observe, for he was going to set his Engine at
work. The Pupils at his Command took each of them hold of an Iron Handle,
whereof there were Forty fixed round the Edges of the Frame, and giving
them a sudden Turn, the whole disposition of the Words was entirely
changed. He then commanded Six and Thirty of the Lads to read the several
Lines softly as they appeared upon the Frame; and where they found Three or
Four Words together that might make Part of a Sentence, they dictated to the

 20

Four remaining Boys who were Scribes. This Work was repeated Three or
Four Times, and at every Turn the Engine was so contrived that the Words
shifted into new Places, as the square Bits of Wood moved upside down.” 2

Plate 1

The handles were turned and new sentences churned out and dutifully noted

down. (Although a satire on what Swift describes as, “improving speculative

Knowledge by practical and mechanical Operations”, ibid. p.175, its idea of a

basic, randomising method has proved quite durable. However, it is not the

only option by any means: there will be many different machines). Whether

electronic or mechanical, what I mean by text machine is: a machine that in its

functioning writes a text. It is for this reason, I am not, as I have stated,

referring to machines that may be used to write, such as typewriters, but do

not themselves write. A text machine may be operated by a person, switched

on, switched off, fed materials, but a text machine writes texts.

The text machine here is a contingent definition that I progressively

destabilise during the course of my thesis. The concepts I rely upon to give

2
 Swift (1963) pp. 175-176.

 21

the machine its description are its rules and instructions, the codes or

languages it may use, and the inscriptions it may produce. None of these

terms are unproblematic and they enter into complex, constellated relations

as I develop my theme.

Almost too late for this thesis, I read Florian Cramer’s (2005) WORDS MADE

FLESH. His pamphlet discusses many things that appear in this thesis (and

some that do not, as Cramer ventures into Lull (Ramon Lull, the medieval

Catalan monk and Cabbalist) and Lullism and other occultisms I do not visit

(see particularly pages 36-41 of his text). Nevertheless, although I have

admiration for Cramer’s writings, whilst reading his text I became aware not

merely of the similarities in our interests, codes, poetry, Claude Shannon, the

Oulipo, and many more, but also the substantial difference between the two

texts, his and mine.

Codes, texts, rules and instructions interact both in my investigation and in

Cramer’s paper. What distinguishes our two texts is my bringing together of

several strands under the theory of a ‘text machine’. To be sure, he makes a

couple of references to ‘writing machines’, but, as with others who use this or

similar phrases, there is no developed understanding of what such a machine

might involve.

Why propose such a machine – and what is it any way? To understand this it

is possible to consider alternatives I might have chosen. Why, particularly, not

say “system”, as in “writing system”? Would not this heading be able to

subsume within it all the various text machines of which I speak? The answer

is, no. The reason is the same reason that I cannot substitute the word

“machine” into the phrase “road system”, and so make “road machine” (which

is instead a common term for a car). Something else is required. Similarly,

with roulette systems, such as the martingale3 system, the system may be

clearly described. But to set it in motion one needs a person, a gambler – or

an automated game player, a gambling machine.

3
 I do not recommend it. Essentially it is, if you lose, double your bet. If you win, cash up and

leave.

 22

“Machine” is being used in my thesis in a way similar to that Deleuze uses it in

his discussion of machines: the formation of materials – or individuals – into

collectives. (Mumford, 1967, expresses a similar idea. The social in Mumford

is already a machine, a mega-machine, and makes possible within it

machines both technical and social). The machine here is something that

does something: it is something that takes an input and transforms it to an

output, or will if provided with the necessary circumstances.

The text machine(s) take their place among other machines, organising both

their materials and their human users. But how do they achieve this? They do

so by the deployment, significantly, of their rules and instructions, codes and

texts – and us, their human ‘users’.

…

The development of my ideas involved passing through a number of areas,

some of which are formally only distantly related. To give some sense of how I

arrived at the formulation of a machine, as the organising theory for my

discussion of instructions and art, I will now go through some of the contextual

background to this thesis.

2. Contexts

Below I go through a series of relevant contexts. There is, however, a problem

of context. My thesis is not really about computers, although it discusses

them. It is not exactly about electronic literature, although it discusses this too.

Nor is it about images, although it is a thesis in fine art. It relates to all these,

but is not precisely about any one of them.

It is a thesis about a text machine; but there is a lack of research in my area. I

may put the problem like this: there is a considerable amount of writing about

the writing, but not much about the machine that writes. Nevertheless, I have

 23

chosen to discuss this machine. To do this I have had to try to draw quite

widely from sources that are not often encountered together.

Here I wish to discuss how electronic literature, computers, and visual art

might relate to one another and how from the interstices between them the

shape of a text machine might begin to emerge.

(I) Visual Art: Instructions and Text

My thesis relates to visual art through the questions first of instructions and

secondly of text: the text machine I theorise is fundamentally the application of

rules to text. Instructions and rules are what I am investigating; the field

in which I am operating is that of visual art.

Text is, since the 1960s, a well-established material of the visual artist,

particularly the conceptually oriented practitioner. For instance, we have Art

and Language’s 1969 ‘Introduction’ to their Journal of Conceptual Art. This

saw the authors raise the possibility that their editorial itself might count as a

conceptual art work (p. 99).

There have been many since (and not a few before) who have made text-

based artworks, for instance Bruce Nauman, Jenny Holzer, or Hamish Fulton,

and some of the recent work of Tracy Emin for example.

Instructions also are an established visual artists’ practice. These too are

usually in textual form. Consider (again) the history of conceptualism; Yoko

Ono had transformed art to text by the time of her 1962 show in Japan.

“…in 1962, I did an exhibition of instructions as paintings at Sogetsu Art
Center in Tokyo. I did a show of instruction paintings at AG Gallery in New
York, but that was exhibiting canvases with instructions attached to them.
Displaying just the instructions as paintings was going one step further,

 24

pushing visual art to its optimum conceptualism (my italics); it would open up
a whole new horizon for the visual arts” (Ono, 1995, p.5).

Whether or not one shares the belief, common for the time, in the antithesis of

language ("the instructions") and art objects (paintings) to achieve a

dematerialisation ("optimum conceptualism"), art as text had arrived.

However, I did not choose to leave matters there, as they were in the 1960s

when according to Bruce Altshuler (2003), “the international art world was

exploding with art-by-instruction” (p. 3). What I did essentially was to apply

instructions to the production of texts. This application I characterise as a text

machine.

It is this, my interest in the application of instructions to text that marks a point

of departure from what might have become an archaeological interest in a

variant of conceptual art. However, an interest in instructions also

distinguishes my interest from one in electronic literature per se, as shall be

seen below.

Where an interest in instructions, as a particular facet of Conceptualism, is still

keen is in computer-based media. This is in part, I have concluded, because

many of these artists are in tune with the critical or counter-cultural aspects of

high Conceptualism. Also, their need to clearly formulate their work so that a

computer may execute it draws them to areas of Conceptualism that are

instruction oriented. However, the connection between art and computing was

made early, in Jack Burnham’s 1970 Software show that joined conceptual art

and computing under the single term (see also Burnham, 1968).

A difficulty may occur where there is a misunderstanding of what

Conceptualism is, if it be conflated with merely following clearly stated

procedures alone; thus, a purported association with Conceptualism can

flatter any sort of programmed art. Lev Manovich demolishes many of the

 25

hopes of computer artists who wish to associate themselves with conceptual

art in his essay Don’t call it art4. I will not repeat his arguments here.

One event that turned me towards programming and away from the

continuing tradition of performance art and conceptual art was my encounter

with Hans Ulrich Obrist’s Do It website5. This is a compendium of artist’s

instructions, interviews and texts. However, the website does nothing to

reflect on its own instructional foundations: these foundations are bequeathed

to it by virtue of its computerisation. The website is a repository of scripts. Yet

their performance occurs offline. I was uncomfortable walking above an

abyss, as I saw it, once I noticed it was there. I had similar misgivings with a

work by Keith Tyson (Replicator (http://adaweb.walkerart.org/influx/tyson/)

where the web was called upon to convey instructions, but performance and

documentation had to be conducted off line. I concluded that this gap

contributed to the work’s lack of usage ("there were 2 Replicators and there

won't be anymore" the web page opines). This prompted me in part to make

user involvement with my work achievable from the keyboard/screen.

That the possible convergence of computers, rules and conceptualism is ‘in

the air’ might be suggested by the inclusion of RSG’s (Radical Software

Group) doctored game art in a recent show: Logical Conclusions: 40 Years of

Rule-Based Art6. In other words, I believe that my research in this area is – at

the very least – timely.

4
 Manovich's reply to Ars Electronica 2003's Art and Code.

5
 It one of several on the Internet: see for example, ‘The Institute of Infinitely Small Things’,

100 (11) Instruction Works: http://www.ikatun.com/100-11/
6
 At Pace Wildenstein, New York City, 2005:

http://www.pacewildenstein.com/Exhibitions/ViewExhibition.aspx?guid=a73e5d4d-f2d6-4cc2-
9030-6e3b784c4ebd

http://adaweb.walkerart.org/influx/tyson/
http://www.ikatun.com/100-11/
http://www.pacewildenstein.com/Exhibitions/ViewExhibition.aspx?guid=a73e5d4d-f2d6-4cc2-9030-6e3b784c4ebd
http://www.pacewildenstein.com/Exhibitions/ViewExhibition.aspx?guid=a73e5d4d-f2d6-4cc2-9030-6e3b784c4ebd
http://www.pacewildenstein.com/jsp/PressReleaseDetail.jsp?pageType=exhibit&pressID=1064&startRow=7
http://www.pacewildenstein.com/jsp/PressReleaseDetail.jsp?pageType=exhibit&pressID=1064&startRow=7
http://www.pacewildenstein.com/jsp/PressReleaseDetail.jsp?pageType=exhibit&pressID=1064&startRow=7
http://www.pacewildenstein.com/jsp/PressReleaseDetail.jsp?pageType=exhibit&pressID=1064&startRow=7
http://www.pacewildenstein.com/jsp/PressReleaseDetail.jsp?pageType=exhibit&pressID=1064&startRow=7

 26

(II) Electronic Literatures

My interest in accounting for the text machine I hope may explain what might

seem a cavalier attitude to the considerable amount of work that has been

done on hypertext fiction and digital poetics and other electronic text. (It is not

hostility: it is a different emphasis). These latter have attracted a considerable

amount of interest, including academic work.

I often have had to remind myself, I was researching the text machine, not a

particular computer program, software package, genre of electronic writing or

the Internet itself. Much of the web is in fact textual, at least on two levels. On

one level, programs are written, and on another level, interaction is often by

typing. I have focused on producing a theory of a text machine not on

theorizing the Internet itself.

Some aspects – the Internet’s poetics, its narrative genres – are dealt with by

theoreticians of these genres (see Los Pequeño Glazier, 2002, for the former,

Michael Joyce, 1995, the latter). In so far as I do consider these issues that

are relevant to my issues but not my issues, I do so from a peculiar (a double

headed word) perspective.

There are other forms of more specifically Internet literature of this type I do

not deal with to any great extent, for instance, Muds (Multi User Dungeon)

and Moos (Multi User Dungeon Object Oriented), AI (Artificial Intelligence)

programs and chatterbots (programs that simulate conversation). These are

all a form of writing – a program – and they are written to and they often write

back. I direct the interested reader to literature on the subject, particularly

Janet Murray (1997) and Espen Aarseth (1997). An interesting combination of

the Oulipian and the Moo is to be found in Katherine Parrish (2005).

Whilst I consider the programming of text at length, and I employ a computer

and I now work on the Internet, I am at the same time, when I write about

these things, writing about something else also: this is the text machine. It is

not, finally, completely identifiable with a particular form of technology outside

 27

of itself, such as a computer, and still less with a particular body of writings.

But my work and my theory have become more committed to working with

computers and the Internet specifically over the course of time.

Let me insist: I begin with instructions.

It is worth restating my argument here, because although I will elaborate little

now, I believe it will make much of what is to come a little clearer: I was

particularly interested in the application of instructions to text. This

(instructions for manipulating or generating, at any rate, inscribing a text) I

characterised as a text machine. This requires a minimum description as

“something that does something to text”. My preference for machines that

write (they also, in some senses, read) is in part because I am interested in

text and in part because as Cramer (2001a) says:

“In digital systems, literature is a privileged symbolic form for this very reason.
We may automatically search a collection of text files for all occurrences of
the word ‘bird’, but doing the same in a collection of image files or bird songs
in a collection of audio files is incomparably tricky and error-prone, depending
on either artificial intelligence algorithms or manual indexing…” (p. 1).

That is to say, I found the theorisation and construction of my machine to be

the more viable because it dealt with text. (The machines I discuss largely fall

into the categories I use in Chapter 6).

Over the years, there have been many valiant attempts to program literature.

A good deal of this has now migrated to the Internet where a number of the

programs are available (an interesting link page for some of these programs is

at http://www.evolutionzone.com/kulturezone/c-g.writing/index_body.html.

There is another at http://www.eskimo.com/~rstarr/poormfa/poemtool.html).

Charles O. Hartman (1996) sketches some, but not all, of this tradition in

Virtual Muse. (Much of this history is still to be written).

Another pre-Web initiative began in France in 1981 (see Harry Mathews and

Alastair Brotchie’s 1998 Oulipo Compendium) when the Oulipo (in English,

‘workshop of potential literature’) inaugurated their computer research group,

http://www.evolutionzone.com/kulturezone/c-g.writing/index_body.html
http://www.eskimo.com/~rstarr/poormfa/poemtool.html

 28

the ALAMO, followed by a group in the USA, and one in Italy, the TEANO.

Paolo Ferrara (2003) provides descriptions of a number of the Italians'

anagram, sonnet writing and other programs. The Oulipo requires a thesis to

itself. Their more purely textual and algorithmic orientation sets my own

investigation at some distance from theirs.

My research is not primarily historical (although I have researched this history

and even contributed to it – see my Computer Poetry’s Neglected Debut in the

appendices): it was both theoretical and practice based

It must be acknowledged that the history of programmed text is to a large

degree one of disappointments. I come back to this later in the thesis. But I

have been aware throughout of how the computer has seldom written

anything of what has been agreed to be of lasting merit, and the reasons for

this are complex. What I wish to say now is, it is bad enough reinventing the

wheel, but one should really not reinvent a square wheel – unless of course it

is for the purposes of research.

(III) Computers (Software)7

This interest in developing theory motivated my use of the computer as a

universal Turing machine. This, as I explain in Chapter 2, is a machine that

simulates other machines. The computer would simulate my abstractly

specified machine and this might tell me something about what otherwise

might seem a rather ethereal entity.

This use of the computer, according to Lisa Jevbratt (2001b), is a rather

antiquated one:

“Because of the traditions in which computer languages were developed, they
are commonly thought of as symbolic logical abstractions of thoughts and

7
 There is a considerable literature about computer programming as an ‘art’. This idea is often

associated with the work of Donald Knuth (1975). I am not writing a thesis about
programming. Elegance and economy of code and algorithm is not my subject.

 29

natural languages, and computers as the universal machines manipulating
these symbols. The praise for these special machines stems from their ability
to simulate any other medium. However the scene has changed dramatically
since the first code breaking machines and other early versions of computers.
Every computer now exists in relation to a network, whether it is connected or
not. Every software is potentially a networked software.“ (No page
numbering).

I spend some considerable effort distinguishing my text machine from

machines it might be mistaken for, not least the digital computer. In so doing I

have given some space to portraying what I think a computer is. This material

dominates Chapter 2 and I will not repeat it here.

But, as Jevbratt says, the scene has changed.

It is true, my work has changed also. Much of it now uses materials only really

available on the Internet and uses these materials in ways that are only

possible with a computer program. The work is accessible by a web

connection by users, and databased by online organisations.

It is useful to remind myself I used the computer initially to investigate the

rule-based constitution of textual procedures. If I could program them, so the

argument went, then it was an instruction artwork. This, in essence, is a non-

computer question, in so far as it is not specific to particular codes, operating

systems or hardware. It is, if you will, an abstract machine simulated by a

universal machine. It is the transposition of one typification of a machine to

another.

This is where what may be seem an indifference to code lies – and a

beneficent indifference to all that is constructed from code. I may never be a

software artist, if by this code is to be my medium. Code is not a medium.

Really, rules and instructions are a method and code is the intermediate

language through which it may pass. Therefore, many of my interests are not

code-specific. They should not be, in a thesis that is interested in procedures

that can be written in numerous codes – or not in code at all.

I chose Perl, it is true, because of its adaptability as a text manipulation

language. Perl is what is called a “high-level scripting language”. What this

 30

means in practice is that instead of having to write out many lines of code,

Perl may require just a line: it is very compressed. Writing in another language

is a different experience. But I am not writing a thesis about programming;

therefore, I do not take this discussion forward.

And there is reason, in any case: I could not say, with Alex Galloway (in an

interview with Jevbratt, 2005a) that “my medium is Perl”, although I now write

some Perl. This is because for me a particular code, the particular program it

writes, is at the same time incidental to the machine. The fact that codes are

interchangeable in most of what I have done underlines this. The indifference

is not mine; the indifference is, I claim, the indifferent interchangeability of

code. In other words there is a difference between the day-to-day practical

matter of programming and the theoretical issues arising from it.

Here I depart from a narrow confinement to a techno-definitional approach to

medium. I am not tied to a primarily physical definition of medium: neither the

matter nor the morphological regularities of a system. Thus I am not primarily

interested in mapping or configuring code structures as the “soil” of the

Internet as is Jevbratt (soil, her word), and others: land or landscape artists

wandering the web with sketchpads – or driving a software Smithson

bulldozer.

Code for me, in its inter-changeability, has something contingent and non-

essential about it as well as being practical and utilitarian in its individual

codes and their uses. This puts all attempts to ‘make code a medium’ (matter)

or a subject (topography) in doubt. It is neither modelling clay nor soil. (So

when I program, I am aware that a task might be imagined without this or that

computer; that, if a computer is used, it can be done in one of many

languages and that even the algorithm I may use is replaceable by others).

There is nothing specific to all this unless it is a lack of specifics.

Nor, therefore can I follow a discernible trend in some software theory and try

to repeat the return of a self-reflexivity associated with modernism (see

Chapter 5). Software theory will never convincingly replicate a passage in that

history and expect to achieve a definition of its own specificity and purity (see,

 31

Thierry de Duve, 1999, particularly his Chapter 3). This is assuming that such

a repetition, should it be possible, is at all desirable, something I here openly

repudiate.

However, in my practice and my theory I have been happy to come to an

accommodation, in fact a fascination, with software, primarily because I have

become involved with writing it. This engagement is reflected in the body of

this thesis.

(IV) Research

Research (in terms of completed PhD theses) available to me is rather scant

and not a little patchy. That it is scattered across several disciplines is not

very surprising perhaps. Relevant areas include visual art, electronic

literature, and computing – particularly where computing touches upon

literature and art.

There is Maria Mencia’s (2004) thesis about multimedia poetry, which

investigates the transposition of visual poetry to computer. Scott Rettberg’s

(2002) thesis on hypertext fiction includes an interesting discussion that goes

beyond his main subject. It also incorporates into the thesis some fiction text. I

have followed this lead by incorporating generated text in this thesis.

Hisar Maruli Manurung’s (2003) thesis concerns an ambitious attempt at

programming a Natural Language Generation poetry generator:

MCGONIGLE. This is a science not a literature thesis. Another PhD thesis

that straddles disciplines with a strong science orientation is Paul

Margerison’s (1994) on algorithmic computer art.

Some other research has been published in book form, most notably

Aarseth’s (1997) text on cybertext from which I have benefited greatly. Also,

 32

Alexander Galloway’s Protocol (2004) is based on his PhD research on the

connections between computing, codes and society.

In visual art there are several areas that seem comparatively well covered: the

Internet as a site for art, for instance, through Josephine Berry’s (2001) thesis,

or Beryl Graham’s (1997) thesis, and more recently Sarah Cook’s (2004)

thesis on the curation of new media art. Nick Lambert (2003) has written a

D.Phil thesis on the history of computer art before the Internet that covers

some of the issues in this thesis. But there is, despite continued fashionability,

comparatively little real research at PhD level on new media art (something

noted by Cook, 2004, for instance: “In the literature, it is repeatedly noted that

there is a paucity of scholarship on the aesthetics of new media art”, p.34).

I have searched, largely in vain, for research on the text machine, or some

variant term. In its interests Steve Hodges’s (2004) M. Sc. thesis came closest

to my own concerns as it discusses the relationship of code, language and

writing. That this thesis is an information science thesis is some indication of

the distance I have traveled in my research8. Nandy Millan’s (2001) thesis is

another science thesis (computer science, in this case) that has some shared

interests with my own. To explore connections between the computer and art,

Millan includes a discussion of A.D.A.M., a poetry-generating applet written in

Java. This use of a text machine – using writing to investigate issues in visual

art – is certainly reminiscent of my own (even though I cannot share Millan’s

confidence that the “program illustrates the use of the computer as an

originator of art, since the only role of the human artist in this particular case is

the one of writing the computer program”).9

8
 However, I should say here I feel the thesis suffers from a lack of clear distinction between

its concepts, for instance between program code and algorithm, which as I explain are quite
separate matters.

9
 Primarily because: “It consists of a number of text files containing a limited corpus of words

which have previously been ordered and classified according to different syntactic categories:
adverbs, prepositions, nouns, pronouns, adjectives, verbs, and so on. All these files are kept
in a separate directory that is called once the applet is initialised.” Its work falls into Bailey’s
(1974) category of “computer-assisted” poetry, where much has been prepared for the
computer. As Bailey says, such works “reflect what its creator thinks a poem should look like”
(p. 286). Here we touch upon a much wider debate about digital poetics.

 33

There are a few other theses that are well worth reading. One is Bill Seaman’s

(1999) thesis about his multi-media work. Another, and not least of these, is a

thesis by one of my research supervisors, Dr Tom Corby (2001). His work and

example gave me the confidence to press on into an area that hitherto I knew

little about and had the less expertise.

3. Conclusion

My research took me into areas I had not explored before. I began with an

ambition to investigate rules and instructions. Early on I decided to confine

myself to rules and instructions applied to text. A speculation about using a

computer to explore this question turned into my full-scale research project as

I learnt to write my own programs. The relationship of these two sorts of

writing became one of the major themes of the thesis as I tried to answer what

became the major question of my research.

 34

 …So the assistant
Points to the old cogwheels, the old handles
Set in machines…

Thom Gunn

Chapter 2: Text Machine

1. Introduction

The text machine has existed in a few instances as a sort of contrivance: as a

device, something actually made. Still not very often, it has existed on paper

alone (as for example in Swift’s fictional machine, or Franz Kafka’s famous

execution-and-writing machine from In the Penal Colony). But the machine, as

written specification, has been more frequently, on closer scrutiny, a writing

system, as differentiated at the start of this thesis from a writing or text

machine. Discussing two such 17th German occult systems, Cramer (2005)

effectively differentiates between machine and system:

“Kuhlmann thought, just as Harsdörffer, of human language as something
inherently computable. [It] therefore suffices as a potentiality and thought
experiment on language and writing, and needs [n]either an actual machine,
nor its output to make its point” (p. 62, my italics).10

Only occasionally have these machines been built as a contraption, gadget,

mechanical contrivance. One example is the concrete poet and Benedictine

monk Dom Sylvester Houedard’s poetry machine, a kind of coin machine

comprising spinning barrels with words instead of icons. Houedard’s

10

 The corrections in square brackets are corrections checked with the author.

 35

machines were exhibited at the V&A Gallery in 1972: “I reached the ‘coin

machines’ where poems could be constructed at the spin of a cylinder, at the

push of a lever, at the bending of an arm…”11

There have been a few others; Daniel Libeskind’s (Plate 2) Writing, Reading,

and Memory Machines12. These are described in his (1991) essay, Three

Lessons in Architecture.

Plate 2

I made several (Plate 3) around the year 2000. They were machines that

projected rotating text that could be read either upside down or back to front.

11

 Ana Hatherley (1972) the art of letting things happen, a letter to sylvester houedard’ (p. 41).
Sadly, these machines may no longer exist. I have seen part of one in the home of the poet
Bob Cobbing (one of Houedard’s publishers). It is a wrought iron frame, about 18 inches high.

12

 All three were destroyed in a fire: see Mathews and Brotchie, (1998) p. 177.

 36

Plate 3

These join the few other machines artists have made occasionally. (Many of

these are not machines that write at all but some other sort of machine:

Marcel Duchamp’s Rotoscopes or Brion Gysin’s Dreamachine).

A number of writing procedures or systems have been invented. Some of

these have been the work of poets and writers and some have been by

scientists interested in generating texts. They are by no means all the same

either in their details or in their context or use. I make reference to several of

these text-making strategies in this thesis. Whether it is the Oulipo or Claude

Shannon13, however, these systems become automated and functional with

computerisation. This observation echoes one by David Harel (1988) about

algorithms and computing. Algorithms predate the computer by a good

thousand years. However, computers, Harel notes, give a huge impetus to

their use and creation. This is also so with text machines. The opportunity to

program them means a growth in their development. This is something I

13

 See Chapter 5.

 37

return to in Chapter 4. In the rest of this Chapter I shall try to define the text

machine and to differentiate it from other machines, including the computer.

The subject of my research is rules and instructions in visual art. The method

of investigation I have adopted is to theorise and construct an artwork I call a

text machine. Text machines have rules and instructions. They are not solely

rules and instructions, but the importance of one to the other will be shown.

It will become clear, not all texts imply the presence of a text machine. And

certainly not all artworks are machines, text or otherwise. I am describing a

particular sort of artwork and an unusual sort of machine.

I describe what a text machine is – and what it is not. I distinguish between

three manifestations of the machine: these may be called the abstract, “paper

and pencil”, machine; the “limited function machine”; and “the simulated”,

imitated by another, machine.

These three are to be understood as the moments of any single text machine.

A text machine may be defined abstractly; may be built as a limited function

machine; or may be imitated by another machine, that is to say, a computer.

Later, I will describe my own efforts to simulate text machines on computer.

A text machine comprises: its Rules and Instructions, its Codes, and its

Inscriptions (and the “text-matter” from which these Inscriptions are formed).

However, a text machine must be understood as a combination: the ensemble

of its aspects. It is not reducible to one of these elements alone.

I now go on to describe a theory of the text machine.

 38

2. Text Machine (Real Machine)

I am not the first to use the phrase ‘text – or writing – machine’. These terms,

or similar ones, turn up quite often. For instance, Rettberg (2002): “Works of

electronic literature should be understood as text machines functioning in

network environments” (p. 5) or as the title of N. Katherine Hayles’s (2002)

Writing Machines, or Italo Calvino’s (1997) Literary Machines. But a phrase is

not a theory, and I have tried to work through the implications of what a text

machine might be.

The conception of the machine as a procedure, in some sense, was there

from early on. Thus, in describing his cut-up technique in Minutes to Go (in,

Beiles et al, 1960 p. 5), Gysin wrote:

 the writing machine is for everybody
 do it yourself until the machine comes
 here is the system according to us

How such machines, not only Gysin’s, might exist I will now go on to discuss.

For it to be a text machine, in the sense I mean it, I propose it must be

possible for the machine to exist in any of three states: abstract, limited

function, simulated. It is not required for the machine to be in all of these

states simultaneously. In fact, if it can be described in its abstract state, then it

is possible for it to exist in the other two. For this reason, the abstract text

machine has a kind of priority over the physical and the simulated.

For the practice part of my submission, I have focussed on the construction of

simulated machines on computer. These simulations are, in part, a way to test

my ideas, although the difficulties of verification, or indeed, what verification in

this context may mean, have also not escaped me.

I might be reminded a text machine is not the only machine in the history of

art it is possible to identify or imagine. This, as noted above, is quite true. For

now, my claim is that a text machine be taken as a model of any comparable

machine.

 39

Belinda Barnet (2004) develops a theory of the evolutionary patterns of

“technical machines”. Trying to accommodate both an understanding of that

machine’s duration over time, and recognition of the changing temporal

qualities of the machine, she concludes the machine “can be identified by a

group of procedures or processes that remain stable throughout the

evolutional lineage” (Barnet, no page numbering). Therefore for her, as I have

tried to suggest above in the case of the text machine: “The technical object is

not concrete”; or perhaps we should say, its concretion is incidental to its

definition and temporal persistence. To take one example she uses (the

computer), the modern digital machine and the 1930’s to early 1940’s

analogue machine “seem completely unrelated”. But they are (by Alan

Turing’s, see below, definition) the same machine.

Such observations may seem to leave me vulnerable to an accusation of

functionalism, such as Hayles (2001) levels at ‘cybertext’ theory: “Like all

functionalist theories, cybertext theory elides materiality in order to create a

template based on function, generally casting a blind eye to how these

functions are instantiated in particular media (no page numbering).” My desire

is to redress, if possible, the balance in the analysis of each part of my

compound noun: both the text (which has had the greater attention) and the

machine. But a consideration of function is unavoidable if the machine is to be

considered in any depth. It is difficult to conceive of a machine of any sort with

no consideration of its function. Hayles, herself, does not present a developed

theory of what such a machine might be in her (2002) Writing Machines. But

this is my ambition: a developed theory of the text machine in this thesis. To

contemplate function does not make one a functionalist. That is a particular

(ideological) orientation to function. Nor does it mean that we necessarily

ignore the functioning machine’s instantiation in particular media, as will be

seen below.

 40

3. Machines, Discrete and Universal

The idea that a machine can be imitated by another machine appears in

Turing’s papers detailing the formalised working of a computer. A Turing

Machine is equal to an abstract description of its functioning. It is essentially a

table of rules such as could be carried out by a physical machine, or also

perhaps a human, described as a sort of ideal clerk supplied with paper and

pencil. 14

(There are many accounts of Turing’s and Alonzo Church’s modelling of

computer function. See W. Daniel Hillis’s account in The Pattern on the Stone

for a largely non-technical introduction).

There is in Turing a distinction between “discrete-state machines” that perform

a single function and “Universal Machines” that can perform the functions of

any discrete machine. A Universal Turing Machine is a model of how a digital

computer works in abstract form (without it being a technical specification of

the actual hardware and software). A ‘discrete machine’, however, only

performs limited tasks.

I will not repeat Turing’s detailed description of these machines that involve a

supply of paper, a system of notation and the ability to write a symbol, or not,

or to erase it. Turing describes how a discrete machine might operate. He

also shows how a Universal Machine, provided with the table of rules of a

discrete machine, might perform the functions of that machine.

It may be apparent that my demand that a text machine may be described

abstractly, made as a limited functioning machine, or simulated (by a

computer), makes it seemingly equivalent to a (discrete) Turing machine. So

where, if anywhere, does it differ? To answer this question I must go into

some detail about what constitutes a Turing Machine as regards other

seemingly similar machines. I will do this by way of a discussion of two

14

 This why Kripke (1982) says, “’Machine’ often seems to mean a program” (p. 33) (although
it is not necessarily specifically a computer program he cautions).

 41

typologies of the machine as they appear in writings by Kenneth L. Ketner

(1988) and by Nick Montfort (2004). If we are to say why a text machine is not

a Turing machine, we need to know what a Turing machine is.

4. Peirce’s Theorematic Reasoner and Chomsky’s Finite
Automaton

Ketner contrasts Turing machines with C. S. Peirce’s interest in logical

machines. On Ketner’s account (see also Peirce 1991), Peirce was little

interested in machines that repeated a predefined process, although he was

not against their use. However, for him, these machines represented a

relatively uninteresting reduplication of reasoning processes already

established.

According to Ketner, Peirce’s interest was in “theorematic machines” (Ketner

suggests the term Peirce machines) rather than those that follow

“deterministic algorithms” (p. 50). This is part of a larger distinction between

deterministic and theorematic reasoning (Peirce’s phrase, ibid. p. 49) in

mathematical method in which Peirce stressed the “hypothetical,

experimental, observational, and creative” (ibid. p. 50).

Clearly, I am not concerned here with mathematical matters. However, Ketner

notes the difference between the wider category of “numerous instances of

nondeterministic (sic) machines”, and a lesser category, of which would

include: “a nondeterministic machine that could accomplish the theorematic

method” (pp. 50-51). If the text machine is not a Peirce/theorematic machine,

could it be, nevertheless, one of the group of non-deterministic machines

Ketner mentions? A non-deterministic machine, for Ketner, might be a

“device, or recipe, that emulates a roll of a dice using at one stage of its

operation some nondeterministic element, perhaps a random number

generator or a cosmic ray detector” (p. 51).

 42

Before I say if this is so, there is a difficulty with Ketner in that he conflates the

Turing machine with a deterministic machine as such. He writes, “a Turing

machine, then, is a definition of such a deterministic method” (p. 55). But in

fact, Turing (1950) airs the idea of a “digital computer with a random element”

in Computing Machinery and Intelligence (p. 5). Turing proposes “instructions

involving the throwing of a die or some equivalent electronic process” (ibid.).

Turing notes that we cannot tell by observing if the machine has a random

element. Therefore, a non-deterministic machine is imaginable (or what

passes a sort of Turing ‘non-determinism test’). The conclusion must be

Turing machines are not deterministic by definition.

Having returned from this excursion, it is possible to ask if a text machine is

deterministic or not. The ‘Kozlowski machine’ (Noumena at http://www.in-

vacua.com/noumena.html, a program that processes web pages) is

deterministic in the sense it does not use a random element, as Ketner and

Turing describe. I have made machines that do, but this is not among them. In

the case of Noumena for instance, it might be argued that we do not know

what a user may input in the form of a web address to process. But by the

same argument we do not know what might be passed to a (deterministic –

some are) Turing machine to calculate. The conclusion must be, a text

machine may be either a non-deterministic machine or deterministic in the

sense I have used. I will argue below that, whilst there are resemblances

between a text machine and a discrete-state Turing Machine, the two are not

identical, but this is not because of the issue of determinism.

There is a recent attempt by Montfort (2004) to contrast two machines he calls

“cybertext” and “hypertext”. Montfort uses the ‘Chomsky Hierarchy’ to draw a

distinction between these machines. Montfort uses only two of the Chomsky

Hierarchy’s four types. One is what Chomsky calls “finite automata” and the

other is the Turing machine. “The paradigm of the hypertext is the least

powerful computational machine, the finite automaton. The prototypical

cybertext is of the fourth and most powerful computational class, a Turing

machine” (no page numbering), according to Montfort.

http://www.in-vacua.com/noumena.html
http://www.in-vacua.com/noumena.html

 43

We need not go into the Chomsky Hierarchy here. Nor do we need to worry

about Montfort’s low opinion of hypertext (based as it is on that literature’s

lack of computational strength). The important question for my argument is,

can Montfort’s “cybertext” be a Turing Machine? If so, Montfort will have

moved our ideas on in this area. Montfort says a Turing Machine “can run

Quake III, display GRAMMATRON, or beat Garry Kasparov in chess”.

However, the two examples he gives of cybertext, Eliza (see Weizenbaum

1978, for Eliza’s simulation of a non-directive therapist) and Racter (to which

the authorship of the fiction work The Policeman’s Beard is Half Constructed,

is attributed)15, obviously cannot do any of this. They are both computer

programs and they produce texts. They run on a Turing Machine (that is, a

computer), they are not themselves Turing machines. They might be

examples of discrete-state machines, with the qualifications I make

immediately below, and they seem to qualify as text machines. But this is not

something Montfort says, and he makes no distinction at all between universal

and discrete-state Turing Machines. Montfort’s categorisation, therefore, is not

a viable tool for understanding “cybertexts” or, indeed, machines of any sort.

5. Text machine – Turing Machine?

If a computer may model a text machine, is it not a simplifying matter to say

that a text machine is a computer? This way we have the advantage (applying

Occam’s razor) of throwing away a complicating part of the explanation. A

Turing machine is the theoretical model of any computer. If so, is not the

Turing machine the theoretical model of the text machine as a sort of ‘text

computer’ also? Libeskind (1991) makes just this adventure when he says of

his writing machine of cogs and pulleys, “it’s a little computer I built” (p. 45).

However, I hesitate to follow him.

15

 Racter is a computer program. The Policeman’s Beard is Half Constructed (1984) is a
collection of poetry and prose attributed to Racter and sometimes credited as the computer’s
first book.

 44

A Turing machine must have several things a text machine does not require: a

Turing machine has a simple and unambiguous notation. It also possesses

clear rules and instructions to follow. A text machine does not necessarily

have these. Text machines may exist without conversion to code and

program. What happens when the computer simulates them is that one must

decide on a definite, or several definite, interpretations of the machine. For

instance, if we wish, although it is not really a text machine, to program

Young’s Composition 1960 #10, to Bob Morris16, we have to decide what the

instruction is, decide the meaning of its terms. I return to this in the next

chapter where it is proposed this is by no means straightforward. For the

moment, I wish to emphasise the difference between an instruction in human

language for a human to interpret and carry out and one, for computer, where

the possibilities are more literally spelt out. In short, a text machine may allow

more ambiguity than may a Turing machine.

6. Between a Turing and an Abstract Machine?

A text machine cannot be confused with Deleuze and Guattari’s (2003)

“Abstract Machine”. I will state the difference before I go on to note any

similarities: a Deleuze and Guattari machine cannot be made.

By this I mean that it is not possible to make a ‘Bach machine’ or a

‘Beethoven machine’ (two of several machines mentioned in A Thousand

Plateaus) either as a physical machine or as a simulated machine. Of course,

the scores to their music may still be played, but theirs are ‘machines’ that

have ceased to function: there is no new forming of unformed matters, in

Deleuze and Guattari’s terms; there is only faux Bach, ersatz Beethoven.

A Deleuze and Guattari Abstract Machine cannot be built principally because

its rules are mentioned but not specified. One cannot really imagine

16

 “Draw a straight line and follow it”. In Sohm, H. (1970). No page numbering.

 45

replicating a Beethoven or a Bach machine with paper and pencil and a table

of prescribed actions. This is because a Bach or a Beethoven never was a

machine in the sense I have described above: their ‘machine’ is less reducible

to a simplified procedure than is a text machine. This is because a text

machine may be thought of as constantly tending toward the finitude of the

algorithm without being constituted as such.

A Deleuze and Guattari Abstract Machine is said to have “rules” (p. 70) and

“is not random” (p. 71) – but the rules are not stated. Their machines form

unformed matters, and my coinage of text materials owes something to their

usage. However, their Abstract Machines extend well beyond my own area of

investigation, to “overcode” language, the body, the earth and more.

The text machine, if it can be made, must also have the possibility that it may

be written. In effect, to be in to be in an abstract form, it must be written; if it is

to be simulated it must be written so a machine can understand it, as code.

The text machine requires a degree of specificity not provided by Deleuze and

Guattari, but not so much as a Turing machine, as I have outlined. It may be

permissible to situate most text machines, if only figuratively, somewhere

between a Turing and an Abstract Machine.

A text machine does not only write, it is also written, or it allows of the

possibility it may be written. This one fact marks the difference between my

understanding of the text machine and the Abstract Machine of Deleuze and

Guattari. It is also the source of an ambiguity at the base of the machine’s

being: is the machine art, or does it make art, or is it both? Can this distinction

be fixed anyway?

(There are many different machines-of-the-text, if I may be allowed this

construction. The Oulipo Compendium, Mathews and Brotchie, 1998, under

the entry on “Machines for writing”, quite properly remarks that all Oulipo

strategies are in a sense writing machines. However, there is an ambiguity as

to whether the techniques that are devised are as intriguing as the writings

they produce – or more so? But it is too simple to say that a text machine is

 46

the artwork rather than its writings. The distinction is not clear. I do not say

that “the difference between machine and output is not clear” – this would be

to contradict all of the foregoing – rather the confusion is how to value each.

Text machines write. As I have said, they also are written, or more correctly,

may be written. How we evaluate this status of writing and being written, and

the relative merits and interest of the two, I shall return to in the fourth

Chapter).

7. Several Machines of Conceptualism

Sol LeWitt’s well known formulation: “The idea becomes a machine that

makes the art” seems to situate the machine as both antecedent and other to

the art. This is a division, a precession, Alexander Alberro observes in LeWitt.

Contrasting him with Lawrence Weiner (who did not), Alberro (1999) writes,

LeWitt, “maintained the work should still take on a physical form” (p. xxiii).17

Alberro contrasts LeWitt’s with Weiner’s well-known position of leaving the

decision of whether to give the work a physical form up to the “receiver”.

Alberro’s reading of Weiner appears to characterise Weiner’s instructions as

something that might – or might not – make art, but are not themselves art;

they are connected with the artwork but are distinct from it. However, Weiner’s

insistence that, “The piece need not be built”, I believe, allows us to interpret

the instruction, in its (abstract) statement of the “piece", as “The Work”, as

17 In Keith Tyson’s work too, I note, a similar distinction persists and is part of Tyson’s

continued debt to Conceptualism. Speaking of his “Art Machine” he says, “It's like a Sol

LeWitt mechanism. But it isn't just intellectual. I have it all written down on paper. It's a proper

flow chart” (interview, Dave Beech, 2002. No page numbering). (Elsewhere – Saul Albert

2002, for instance – it is suggested it is a computer program, in Prolog; Prolog is a logic

manipulation language). Whatever the Art Machine is, or is not, it is inaccessible to us: we

know it principally by its products (and Tyson’s contradictory remarks). Crucially, the two

remain different as of kind. The Art Machine is not itself present as work. Nor can it be

inferred.

 47

much as any physical fabrication. Alberro’s (Ibid., p. xxiii) claim that in Weiner,

it is “the eclipse of the authorial figure of the artist” that is achieved, is a

misreading on this account, or at least is a partial reading; it is the eclipse of

visual art as object-only that results. The work is both object and/or the

abstract statement of its conditions. One further step is possible to imagine:

the question of the work’s simulation. I return to this in a moment.

An example: Weiner’s instruction: “One Hole in the Ground Approximately 1’ x

1’ x 1’. One Gallon Water Based White Paint Poured into this Hole”. This work

can be instantiated physically (or not, according to the Weiner credo): there is

the written instruction, and there is the physical instance. And there is nothing

to say we might not, if we had not known it first, have worked back from the

instance to the instruction: started from the instance and produced from it its

text (more of this in the next Chapter).

But could we work from the instruction of this work by Weiner to its

simulation? I am referring to the same sort of simulations as those I speak of

above, where the machine and its activity are simulated by computer.

There is obviously a difference here: Weiner’s instruction and the material it

addresses constitute two different media; they exist in two different realms:

text, a symbolic medium, and paint, the ground, physical substances.

However, computer instructions (a program), and the text-materials (data) of a

simulated text machine, can be held in the same medium. As Cramer (2003,

p. 101) notes, the previously assumed “clear cut-division, a material difference

between the tool and the writing, the processor and the processed, no longer

exists in software since computers adopted the Von Neumann architecture of

storing instructions in the same symbolic realm”.

This “Von Neumann architecture” constituted a revolution in computer theory:

“Every tradition of common sense and clear thinking would tend to suggest
that ‘numbers’ were entirely different from ‘instructions’. The obvious thing
was to keep them apart: the data in one place, and the stock of instructions to

 48

operate on the data in another place. It was obvious – but wrong.” (Hodges,
A., 1983, p. 302).

(John Von Neumann’s paper containing these ideas is dated 1945). So it is

for text as it is for numbers. The data and the instructions can be kept in the

same ‘place’.

However, there is still as yet no way to convert, to take another Weiner

example, plaster and lathing to binary code. But the unification of instruction

and material permits full simulation, instruction and materials, in the case of

the simulated text machine, but not for the Weiner. So long as instructions,

which can be written as code, are to be executed on other symbolic matter

(such as text, but not of course, exclusively text), the machine thus constituted

may be fully simulated with a computer.

Therefore, simulation of the Weiner is not possible in the sense that I have

developed it. A computer animation of the work would not simulate the

‘Weiner Machine’: it would merely represent it. Here lies one reason for

selecting symbolic media, text, to work with.

The development of a theory of a simulated machine was given impetus by

my interest in a work by the Polish artist Jarowslaw Kozlowski, Reality18.

Reality is a 1972 bookwork. It comprises a section of Kant’s Critique of Pure

Reason with the text removed, leaving the punctuation. The effect of this is to

draw attention to the sentence structure over the sense of the text. My wish

was to construe from Kozlowski’s bookwork its instructions and set them in

action, my preferred method being to make a computer simulation. This, in

effect, was to construct a simulated ‘Kozlowski Machine’ (http://www.in-

vacua.com/noumena.html): a machine that deleted text and kept the

punctuation of web pages. The method I adopted to do this might be

conceived of as a form of “reverse-engineering”. This might seem a strange

application of the term, although it is not so uncommon where computer

18

 There is further analysis of this artwork in Chapter 6.

http://www.in-vacua.com/noumena.html
http://www.in-vacua.com/noumena.html

 49

scientists19 become involved in working out how a text might have been

generated20. (I have placed in the Appendix to this Chapter my reasoning

concerning Noumena’s reverse-engineering of Reality).

If it is accepted that we are talking about the same changing machine over

time, it may still be objected that artworks are more than an abstracted

procedure, that when simulated, the Kozlowski loses specificity. The choice of

texts treated is important to the interpretation of the original work. With the

Kozlowski, it is a section of Immanuel Kant’s Critique of Pure Reason that is

deleted (there is a case for arguing that the section is the one where Kant

discusses the noumenon, the reality beneath phenomena, but I have not been

able to confirm this21).

With the simulation of the text machines certain specifics are lost – but others

are gained; new materials are treated. Text machines pull text-materials into

them and form them anew. The machine itself may be described, but so may

its inputs and its outputs; the machine requires only something to work on for

its functioning and in so doing it subjects new textual resources to its process.

19

 Here is a programmer talking about how to reverse-engineer a text. Schwartz (1999): “I
typed random sentence into www.google.com looking for some grammars. The most
interesting hit I got led me to the Dilbert Mission Generator, located at
http://www.dilbert.com/comics/dilbert/career/bin/ms2.cgi. I spent about an hour hitting reload
repeatedly to reverse-engineer the output... I've cleaned up some of the choices, and fixed a
few misspellings, so this grammar isn't quite what you see there.” (The web address is wrong.
Try http://www.dilbert.com/comics/dilbert/games/career/bin/ms_noun.cgi instead).

20

 More recently I found this passage about Quirinus Kuhlmann in Cramer (2005, p47):
“Through this intertextuality, the poem renders itself a Solomonic machine. It is a
computational reverse engineering of Solomon’s wisdom, considering the proverbs as they
are written in the Bible the fragmentary output of an occult machine.”

21

 Book II, Chapter III: "THE GROUND OF THE DISTINCTION OF ALL OBJECTS INTO
PHENOMENA AND NOUMENA". The noumenon is Kant’s inaccessible ”thing in itself”. The
phenomenon is the object of experience. Kozlowski, I believe chose this passage with care to
draw attention to the syntactic structure of language as marked out by the punctuation.

http://www.dilbert.com/comics/dilbert/career/bin/ms2.cgi
http://www.dilbert.com/comics/dilbert/games/career/bin/ms_noun.cgi

 50

8. Loosely Related

I should at this point make it clear that I am not using terms such as “abstract

machine”, or another (that I have not used), “virtual machine” in the several

senses that computer scientists use them. But the distinction may appear

subtle, and although I do not wish to become involved in these more technical

discussions, I must touch upon the matter now. It may seem that my

comments on the text machine more or less parallel discourses in computer

science. I mention this possibility now so as to ensure there is awareness of

the issue, but also because comparisons may prove productive to my own

theme.

I have indicated some of the differences between my use of the term text

machine and other machines as they appear in computing science and the

arts. “Abstract machine” in computer science in its “generic meaning is a

behavioral model of a computer”22 is, as I have tried to establish in the

preceding chapter, not identical with my term.

A “virtual machine” in the sense of the “creation of a number of different

identical execution environments on a single computer”23 is still more a

technical specification and further from my area of interest. However, “virtual”

and “abstract” are sometimes used interchangably by computer scientists to

refer to higher level programming structures that are effected ultimately at the

(lower) level of the physical states of the computer. It is this issue I am

interested in here.

This approach to the abstract (or virtual computer) has relevance to my

discussion. High-level structures (such as lists, arrays and other programming

constructs) are abstractions seen as having a low-level machine

implementation. For Aaron Sloman (2002) these are virtual processes or

mechanisms that “really exist” and have “causal consequences” (p.188). He

22

 http://en.wikipedia.org/wiki/Abstract_machine

23

 http://en.wikipedia.org/wiki/Virtual_machine

http://en.wikipedia.org/wiki/Abstract_machine
http://en.wikipedia.org/wiki/Virtual_machine

 51

resists, therefore, a reductionism that might grant existence to mechanical

features alone, such as voltage, wiring and the rest. Why indeed stop there

and not recognise only atomic and sub atomic levels? In the end this may

become, if it is not already, as Sloman suggests, a metaphysical question,

one I, like he, will not pursue.

High-level abstractions may have implementation in various ways. So, for

instance, Chris Fields (2002) differentiates between three levels in ascending

order: (i) processes of the system’s hardware that are the implementation of

algorithms and data structures (ii) the algorithms and data structures

themselves (iii) the computations realised by the algorithms executed (p.166).

These levels are, according to Fields (who in turn is following Marr), “loosely

related”. He writes:

“This argument is based on the observation that a given computation may be
realized by many different algorithms, that a given algorithm may be
implemented by many different physical processes, that input-output
experiments cannot distinguish between different algorithms or
implementations…” (op. cit.).

These arguments are applied to the composition and functioning of the

computer alone in Fields’s work. They do not extend further, to embrace

physical processes and “input-output” that does not necessarily involve a

computer. But there is no reason why we might not make such an extension

to the text machine. We could substitute, for instance, the “writings of the text

machine” for “computations”; “instructions” for “algorithms”; and “pencil and

paper machine” or “nuts and bolts machine” for the computer’s hardware.

For the text machine in each of its instances, at higher levels there are

instructions and a language in which they may be expressed, and below that

a physical process. They produce texts of a given sort or sorts (replacing

“computations”). But the machine is not identical with the language of

expression or the physical process of its instantiation. We may move across

processes and languages, transposing languages as we go.

 52

It is important to recall that a computer may be either a discrete-state or a

universal machine. A discrete state machine (computer) performs distinct

actions according to its rules and instructions. But discrete-state machines

may not be computers at all (Turing24 gives the example of a lighting system).

It is also true that a computer need not be electrical (Turing’s example is of

Charles Babbage’s Analytical Engine25). I do not use “discrete-state machine”,

preferring the less historically weighted “limited function machine”.

The distinction, therefore, is not between computers and the rest, nor between

electrical machines and the rest, but between machines that perform one or

several functions and a machine that can “mimic”, to use Turing’s word, all the

others: it is the “special property of digital computers, that they can mimic any

discrete-state machine” (ibid. p. 7). It is because of this property that many

discrete-state machines are not constructed at all. There is no need to make a

‘nuts and bolts’ machine like Babbage’s, nor is there a need to fabricate a

discrete-state electrical machine (although for archaeological reasons

sometimes such machines have been constructed). Why do this when

universal machines are commonplace?

These distinctions become important when we discuss text machines. The

construction of a machine consisting of wheels and gears is certainly possible.

It is possible to identify a machine, an electrical digital machine, which only

performs various text operations and is thus not a conventional desktop

computer (in other words, a computer that could not be reprogrammed: a kind

of pocket text calculator26). The existence of a universal machine (the desktop

computer) limits their use and availability. The construction of a machine of

levers and connectors is more likely to be for historical or perhaps purely

24

 Op. cit. p. 6.

25

 “Since Babbage's machine was not electrical, and since all digital computers are in a sense
equivalent, we see that this use of electricity cannot be of theoretical importance”, ibid. pp. 5-
6.

26

 An instance might be the ‘Pocket Crossword Solver’ made by the Lexibook Company. The
one I own is from 2002. It performs several functions, including an anagram search.

 53

theoretical reasons. Hillis’s ‘Tinker Toy Computer’, a ‘tic-tac-toe’ player made

from a children’s construction set is one such (see, Hillis op. cit. pp. 16-18).

9. Conclusion

In this chapter I have described a text machine artwork. I have proposed that

the machine can be described in the abstract, made physically, or be

simulated. I have distinguished my concept of the machine from some other

relevant ideas. I explained how simulation of the machine could be achieved

because of qualities inherent in the computer as a Universal Machine. This

favours, but not exclusively, the use of text, a material that may be stored and

processed within the architecture of the computer as presently constituted.

We have seen the importance of rules and instructions. In the next chapter I

explore this question in more depth. I also return to the problems of deriving

an instruction and following an instruction, and the peculiar status of rules in

art.

This moment seems to constitute a central point in my thesis so far and one

that much of the preceding was tending to all along. The foregoing

statements, I wish to suggest, represent an advance in a theory of a text

machine, one that has relevance also to the theorisation of other “writing” and

“art” machines that may nearly or exactly coincide with it.

In the next Chapter I shall test this contention by posing what I think are some

substantial objections to rules and instructions and their use.

 54

Appendix to Chapter 2

In this Appendix I develop a discussion of how it might be possible to reverse-

engineer an artwork and some of the problems this poses. The ideas

presented here will be taken up at points later in the thesis, not least in

Chapter 3 (the difficulties of following a rule), Chapter 4 (particularly section 2,

“Reverse-Engineering a Text “) and Chapter 5 (concerning Finnemann’s

recent consideration of flexibility in rule generation).

I begin with three propositions:

1. Instructions are producible.

2. Instructions are expandable.

3. Instruction-art has structural identity.

I will now go on to explain what I mean by these remarks. Will do so by

reference to the relation of Noumena (at http://www.in-

vacua.com/noumena.html) to Reality by Kozlowski.

1.‘Instructions are producible’. I do not need a written instruction from

Kozlowski’s hand (to my knowledge there is none, nor have I seen one) to

turn it into software. An instruction can be written after the fact. If it can be

done, then that work was instruction-art. An instruction is construable, in a

similar way that a grammatical rule is construable, from practice: a speaker

does not necessarily need to know the rule to follow it (though they may). If it

is there, however, it may be abstracted and consciously adopted.

http://www.in-vacua.com/noumena.html
http://www.in-vacua.com/noumena.html

 55

2. ‘Instructions are expandable’. The instruction abstracted from the Kozlowski

is restricted in scope to one text: “delete all the text from a passage from

Kant’s Critique leaving the punctuation”. It is expanded in Noumena to

“remove the characters from any text that may be displayed on computer,

leaving punctuation”. That instructions are expandable is important to my

argument and wide ranging in effect. I return to it immediately below.

3. ‘Instruction-art has structural identity’. This has two aspects. One relates to

the instruction, the other to its application.

Noumena does not in fact remove all text. Occasionally some is left (for

example on the ‘submit‘ buttons on a web page). This could be corrected, but

it is not important because greater structural identity takes precedence over

subordinate detail.

Secondly, that ‘Instructions are expandable’ (as above) means that the

instruction itself may undergo change, so long as this is not beyond

recognition. In changing the instruction’s scope I have necessarily altered

some of its qualities. But not completely, it is the Kozlowski instruction

transposed to different media. Instruction-art should thus be seen as a system

of rule development, not of passive rule following. We are used to the idea of

variability of the performances of this script or that score. The idea that the

instruction itself may undergo dynamic development is less familiar.

Fig 1 is intended to represent these arguments schematically.

 56

Fig 1

Applications of Reality Applications of Noumena

The meta-instruction (“remove the characters from any text, leaving only the

punctuation”) encompasses both subordinate instructions. Noumena’s is not

the meta-instruction because it is limited to texts that may be displayed on

computer, and that is not all texts.

The instructions are placed in descending order. This represents their relative

generality. In practice many gradations are possible, and thus many more

instructions.

There is a broken line from Noumena’s instruction to the applications of

Reality. This is because it is possible to use its software to treat a section of

Kant, so potentially at least, some applications of Reality’s instruction might

count as Noumena’s.

Meta-instruction

 Noumena instruction

 Reality instruction

 57

9. Conclusion

It is my argument that the theory proposed above accounts for the particular

case of ‘Noumena-Reality’. It establishes in what sense it is possible for one

to be a software version of the other. However, the theory might, and I believe

should, be applied to any similar relationship between works, and regardless

of media. As such, I wish to make the claim that this theory effectively

answers a central problem posed by my research. To summarise:

I have proposed that a rule may be derived; it does not need to be given.

I have also proposed that a rule may be increased in scope and transposed

for use in different media, and I have indicated why and in what ways this is

possible.

This suggests how an artwork might be reverse-engineered. I return to the

concept of reverse-engineering. When I do, I will give the concept itself further

explanation.

 58

Inside the computers themselves everything becomes a number: quantity without image, sound, or
voice. And once optical fiber (sic) networks turn formerly distinct data flows into a standardized series of

digital numbers, any medium can be translated into any other. With numbers anything goes.
Modulation, transformation, synchronization; delay, storage, transposition; scrambling,
scanning, mapping – a total media link on a digital base will erase the very concept of
medium. Instead of wiring people and technologies, absolute knowledge will run as an
endless loop.

 Kittler (1999)

Chapter 3: Instructions Rule

1. Introduction

In the last Chapter I began to establish what the text machine was. In this

Chapter I continue to elaborate on this discussion.

I have said that the text machine has rules, codes, and inscriptions. In this

Chapter I discuss the text machine’s rules. I will talk about the problems that

rules and rule following may create for my theory. I will then go on to show the

kind of rules we might be thinking of in a discussion of a text machine.

But before this, in the initial sections of the Chapter, I intend to draw in a

larger debate, as the effects of digitisation call into question the role of distinct

media in cultural production. I attempt to extend the scope of this discussion

to engage with an idea of what I call the post-mechanical.

 59

2. “Post-Medium”

There is a debate played out about the status of media when they are

converted to digital code. This discussion takes place in the writings of

Rosalind Krauss (1999), Manovich (1999, 2001), Kittler (1999) and Mark

Hansen (2004), amongst others. It is part of a wider debate about the

consequences of digital conversion not only of text, sound, film and

photography and other visual media, but also of human identity, as retold in

Hayles’s (1999b) account of the posthuman, but associated with Moravec

(see also Hayles 1999a) who controversially suggested downloading a human

consciousness to disk. Yet, whilst what it is to be human and cultural forms

are called into question, the machine itself customarily remains hidden, as it

were (to adapt a figure from Marx), behind the backs of the cultural producers.

The theorists I have mentioned, in their different ways, give consideration to

the effects of the digitisation of sound and visual media, such as photography

and the cinema. However, these discussions focus primarily on the image, on

the photograph and the film, not on the machine. In my writings I will not be

dealing in any detail with these previously distinct media, or with their

machines. Rather, I will consider only the text machine and how it too might

be made into a signal, be transmitted and reconstructed. That this may be

possible is due to what the machine is, its mode of existence. It will be seen

that digitisation dramatises this issue, but for me, does not create its

conditions.

With digitisation, at the core, there is a realisation that what were formerly

different media, be they film or text, photograph or sound, are no longer

distinct in their storage and transmission conditions: all, at bottom, are binary

digits. But there are, if you will, two levels27. Hansen (2004) stresses the

“human perceptual ratios” (p. 1), where data is experienced as differing

phenomena, be it an image, or whatever. But there is also the circumstance,

27

 In fact this is a rather basic division. According to Richard Feynman, Lectures on
Computation, there are thirteen levels to an operating system. See Matthew Fuller (2003) p.
21.

 60

as Kittler (1999) puts it that: ”Inside the computers themselves everything

becomes a number” (p.1) – although it is more correct to say “a value”28. Of

course, let us be reminded, we are not inside the computer, or at least not yet.

As Kittler realises, we do not experience an undifferentiated data stream and

it is this that leads him to observe, despite their informational basis, “there are

still media” (p. 2). That is to say, we continue to distinguish between media, in

a way that the computer need not in its mechanistic indifference. However,

the tension between our perceptual experience and the digital,

undifferentiated ground of being of the media we experience persists.

I wish to go further, rather than turn, as does Hansen, I feel too soon,29 to the

phenomenological in pursuit of understanding new media. I wish to focus not

merely on new, grounding continuities between formerly separate media, but

also those between machines. Secondly, I want to assert that this is a

continuity that is prior to digitisation.

3. Post-Mechanical

My wish is to extend the debate about media to the machine, a machine

viewed as something that may be converted to signal and transmitted. The

“abstract body” must be provided with an actual body, nuts and bolts, pencil

and paper, or the hardware of a computer, if it is to function. However, for me

the machine is not identical with any of its actual examples. As will be seen

below, this is not a result of computer use, but in fact precedes a particular

technology.

28

 This because 0s and 1s are a convention for representing what are in fact switches: a
series of on and offs. They are not really numbers.

29

 I disagree with Hansen precisely in this, not that “[n]o matter how “black-boxed” an image
technology…may seem, there will always have been embodied perception as/at its origin” (p.
9), but that there is no way to gain access to this origin, nor that if we could, would we be
greatly advantaged in our understanding by it. Rather than to turn away, to an originary myth,
I will try to look harder at the box.

 61

A text machine may be thought of as consisting, substantially but not entirely,

of rules such as may be passed to a computer to execute as an instruction. A

text machine, it will be remembered, does not have to be converted to

computer and program, but it should in principal be possible.

It will be noted, I have just introduced a distinction between “rule” and

“instruction”. Implicit in this is a distinction between a rule that specifies what

shall be done, and instruction, something that can be followed: the instruction

gives detail to the rule30. This will become important as I continue, when it will

be seen that the same rule requires appropriately differing instructions if it is

to be executed, for instance, by a human rather than a computer. But it may

be useful to think of an example used in Chapter 2, where a random number

function or some other computational device simulated random processes,

such as the throwing of dice. These events have the same rule (“random

occurrence goes here”) but are different instructions (“throw dice here”, rather

than, “random function occurs here in computer script”).

What I am suggesting is that the machine, its functions, what it does, can be

encoded and passed in appropriate form, to a computer to execute. The rules

and instructions are (see previous Chapter) a machine in the abstract such as

a computer can enact. This is a conception of a post-mechanical machine: a

text machine requires a medium, but is not medium dependent. Furthermore, I

must add immediately and because of the preceding remark, the texts the

machine produces, similarly, require a medium but are not medium

dependent.

This latter proposal, relating to the text, is controversial on its own (and I

return to it). Its extension to the machine that writes, one can only assume, is

30

 This distinction seems to be seldom made. David Bloor (1997) suggests it whilst
distinguishing between teaching a rule by examples and teaching by instructions: “Sometimes
we instruct learners verbally, and if the would-be rule followers understand our instructions
they will be able to follow the rule by following the instructions” (p.11, italics mine).

 62

not doubly controversial purely because that machine is so often left out of the

picture altogether.

A text machine is importantly, although not solely, a set of instructions. These

instructions may be converted into an instruction such as a computer may

execute in the form of a program. Not only that, the program must be

converted to an encoded signal if it is to be sent between computers (should I

wish to send it to a Web server’s computer, for example). Even if I wish only

to run the program from the command line, whatever I type into the text editor

by way of program must be converted into something the computer can use,

via assembly language to machine code, to a series of charged and

uncharged states, the myriad switches that are flipped in any computer whilst

it runs. (Hillis, 1998, provides a readable and clear account of a computer, in

rather similar terms, as a logical process that can be turned into a series of

switches that may or may not be electronic and digital. This latter is but one

option, albeit a fairly good one).

Neither the language of the instruction nor the medium it is written in are

indispensable to it. That a computer program does not require a computer to

exist is plain from the storage format of computer programming books: usually

paper and ink (although a program requires a computer if it is to run, if it is to

do anything). That an instruction is not language-specific is apparent from the

possibility of “agreed transposition”. This may occur between levels of code,

as I have just noted: let us call it “conversion downward”. So, we may write a

program in something a human may find more digestible, higher-level codes,

and this may then be converted to something the machine may use, its native

machine language. We may also convert between higher-level languages:

“conversion across”. What is written in, to take just one example I am familiar

with, TRAC may also be written in Perl 31: what is written in one script may

conceivably be changed into another. However, we may also convert a

human language instruction into an instruction for computer.

31

 Margaret Masterman and her collaborator Robert McKinnon Wood used TRAC, a now
rather antiquated language, to program COMPUTERIZED HAIKU. TRAC stands for “Text
Reckoning And Compiling”. Perl is a contemporary scripting language: “Practical Extraction
and Report Language”. I used Perl for my version.

 63

These conversion processes are not in themselves controversial; it is their

implications that are the source of disagreement. An instruction may be

considered the text machine in the abstract, a kind of (what Turing might call)

“ideal machine”. This machine may be written in a number of ways, in different

languages, in different media. If it is to be made, we also require either a

physical (non-computer) machine that will shunt the text inputs, or we need a

different sort of machine, computer hardware plus program, that can perform

the same text manipulations.

What I am proposing therefore is a conception of a machine that may be

made in several ways whilst remaining recognisably the same machine. This

does not deny its materiality, but relieves the machine of a sole dependence

on a particular material. I hope thus to avoid strictures on anti-materialism, or

worse, ethereality.

We now have a machine that is defined as rules and instructions that may be

instantiated in different ways: as a set of actions that may be performed using

paper and pencil; a “limited function” machine (a machine that performs one

or a few set tasks and no more); or as a machine mimicked by a computer.

(Of course these distinctions are themselves formal and not absolute, what is

written requires writing materials and someone or something to do the writing;

a computer is not information alone. Nevertheless, my distinctions describe

real differences in the possible constitutions of a single machine). We must

now consider what are the consequences of this convertibility, particularly

what happens when the computer simulates the text machine.

4. The Problem With Rules

In what follows I will attempt to anticipate and deal with some problems that

might be posed for my understanding of the text machine, particularly where it

is reliant upon rules and instructions that have been characterised as inter-

media.

 64

Ludwig Wittgenstein32 (2001) poses a problem with rules thus:

“This was our paradox: no course of action could be determined by a rule,

because every course of action can be made out to accord with the rule.” (p.

81).

Before I discuss Wittgenstein’s response to the problem he poses, I will say it

is possible to invert this paradox: any rule might also be made out to accord

with a course of action. That is to say, we could start with a course of action

and produce numerous rules to account for it. Whichever direction we go (up

from action to rule, or down from rule to action) we have difficulties with

accounting for one by reference to the other.

The way I wish to examine this problem is to look at a particular case, La

Monte Young’s Composition 1960 #10, to Bob Morris (“Draw a straight line

and follow it”). I choose this instruction as it is quite often referred to in the

literature. So, for example, for Cramer and Gabriel (2001) it is “a seminal

piece of software art because its instruction is formal“ (p. 8). Their

assessment, however, is only good if the instruction is interpreted quite

literally. However, it may be construed in any number of ways. Young himself

interpreted his instruction by variously drawing lines. But another

contemporaneous performance involved sustaining a single chord on the

accordion for two-and-a-half hours33.

Yet “to draw” could be interpreted as to select something allowing chance

determination. Lines could be put into a hat and ‘drawn’. But the line itself

could be a line of text (there is nothing to say it is not). A straight line could be

a truthful or direct line of text. “To follow” can mean, in one usage, to

32

 I am, I should say, aware of the controversy around Wittgenstein and rules and particularly
Saul Kripke’s (1982) contribution to it. It is one that I abstain from here partly because of its
potential to deflect me from my main task. Secondly, I wish to offer is my own contribution to
the paradox Wittgenstein poses about rules.

33

 See Keith Potter (2000) p. 54.

 65

comprehend. Now we have a completely textual version of the instruction that

involves selecting, reading and understanding lines of text.

Now, if we were to begin with the course of action, observing someone

carrying out our last version of the instruction, we would have someone

selecting a line of text, reading it and attending to its meaning. But then if we

were to attempt to produce an instruction for this activity based on our

observations it is unlikely we would arrive at La Monte Young’s instruction.

The instruction we might make could be something like:

 “Put truthful lines of text in a hat. Select at random. Attend to their meaning.”

Something has happened here. Diagrammatically we could represent the

process as:

Instruction ¹ Performance Instruction ²

And so on, with new executions and new instructions. Of course, it might be

objected that the ‘performance’ was a wilful misunderstanding of La Monte

Young. However, my wish was to illustrate the difficulty of following an

instruction and of construing an instruction from a practice. This is a real crux.

There now appear to be two quite different ‘machines’, and there is nothing to

say there cannot be an endless proliferation of them, each with its own

instructions. Reverse-engineering is going to encounter problems in these

circumstances.

It is certainly possible to incorporate this tendency, to diverge incrementally,

into the artwork. Tyson (2004) uses it in Replicator, where instructions are

derived from an artwork and new artwork from instructions in what he likens to

“the children's game of 'chinese whispers'”. But where does this leave my

attempt to define a physical, abstract and simulated machine? Each is said to

be a different moment of a single machine. How can we be sure that a

 66

physical machine is the instance of its abstract counterpart if interpretation

can be so apparently arbitrary?

Wittgenstein’s answer to his paradox is to claim, “there is a way of grasping a

rule which is not an interpretation”, and that “’obeying a rule’ is a practice” (op.

cit.). For Wittgenstein language is a form of practice: if you want to know what

a word means look at how it is used. This sort of argument has occasioned

some commentators to say that Wittgenstein has a “normative” concept of

rule following (for instance, Michael Luntley, 2003, while David Bloor, 1997,

speaks of the Wittgenstein’s “normativity of rules” p. 19). However, this only

really works if there is already some sort of normative activity, as there may

be in language use. But my construction on La Monte’s instruction is entirely

legitimate. One cannot appeal to usage to ‘correct’ my interpretation, no

matter how strongly it is felt it is wrong.

La Monte Young’s Composition 1960 #10 is capable of sponsoring an

apparently endless number of practices partly because of the inherent

ambiguity of words, but more to do with what sort of instruction it is. The best

response is to value that quality, rather than to attempt to turn Young’s

instruction into some sort of proto-software. The instruction is made so as to

permit a range of interpretations: When we program a computer what

happens is that we effectively have to opt for one, or several, but at any rate

specific, interpretations and exclude others (those that are not programmed).

There are patent differences between human and computer languages and

instructions. The latter are both more cryptic and less ambiguous. Entirely

contrasting interpretations can be a problem when passing an instruction to a

computer.

For the moment I shall concentrate on a method of deciding if we are possibly

contemplating the same machine when we are looking at its different

versions. We could identify the normative activity of the text machine with its

writings. Might it be these that will give us an idea of what machine we are

looking at?

 67

For instance, let us consider the programming of COMPUTERIZED HAIKU

http://wwwin-vacua.com/cgi-bin/haiku.pl. Does ‘my’ version bear any

resemblance to Masterman and McKinnon Wood’s? It does, in the sense it is

possible to use it to produce the same haiku as their program, and we can

compare the examples in Masterman’s (1971) essay with the products of my

programming. The argument might go, “if it has a comparable practice it is a

possibly a comparable machine”. This is despite the obvious differences.

Theirs is programmed in TRAC, mine in Perl. Mine outputs the haiku to

screen and is available on the Internet; theirs was hooked-up to a paper

printer when the Internet was no more than a dream, and so on. These

differences are permissible because, as I have explained, neither a particular

language nor a physical process is essential to the making of a text machine.

However, there is a problem in attempting some sort of taxonomy of the text

machine by reference to its writings alone. This is because of the principal of

‘loosely related levels’ announced earlier. It was argued, following Fields (op.

cit.), that a number of different algorithms could achieve the same

computations, and these could be founded on different physical processes.

This principle of ‘loose relations’ may be extended to the case of instructions

(an algorithm is a narrower and more demanding subset: see Harel).

If so, merely that similar texts are produced does not mean the same

instructions are being followed.

A way of dealing with this is to fall back on the distinction, made earlier,

between rules on the one hand and instructions on the other, and extend this

to algorithms. The rule or rules are here the broad structure of the machine,

but instructions and/or algorithms are possibly alterable and replaceable. For

instance, a rule might be to combine lines of text randomly. This might be

achieved by following the instruction to physically cut the text into lines and

shuffle, as with Raymond Queneau’s Cent Mille Milliards de Poèmes

(Hundred Thousand Billion Poems34). However, in programming, a

34

 There is an English translation in Mathews and Brotchie, 1998.

http://wwwin-vacua.com/cgi-bin/haiku.pl

 68

comparable effect may be achieved by using an algorithm such as the

“Fisher-Yates Shuffle”35. This algorithm is one example of how to perform a

shuffle. There are other ways to create these effects.

Now we have a concept of a rule that may have different instructions and/or

algorithms to perform it, which may result in texts that are similar or identical.

If we can make a rule, and the applications of the rule produce a comparable

result, then we might claim we are following the same rule. This constitutes, in

Wittgenstein’s terms, “a practice”. This puts us in the position where we are

able to compare rules with rule following and to form an opinion of their

relationship. This should work whether we start with practice and work up to

the rule that is meant to account for it, or down from the rule to the practice

that is said to represent the following of that rule. This necessitates some

flexibility in our approach. Ironically, it has proved more difficult to say what

we mean by rules and rule following than we might have hoped. There is no

golden rule when it comes to rules (see Appendix to Chapter 2 for a response

to this problem in relation to an example of artwork).

5. Conclusion

Derrida (1981) summarises one (there are several) of a series of unequal

pairings in Kant. The mechanical has no claim to the Fine arts. Kant writes,

"...a mechanical art neither seeks nor gives pleasure. One knows how to print

a book, build a machine, one avails oneself of a model and a purpose" (p. 8).

35

 sub shuffle {
my($array) = shift();
for (my $i = @$array; --$i;) {
my($j) = int(rand($i + 1));
next() if ($i == $j);
@$array[$i, $j] = @$array[$j, $i];
}
}

Written in Perl. This is the algorithm only. Without the surrounding code it would not do much.

 69

In Hegel too, the machine and its mechanical productions occupy a similar

place. Mechanical writing is low in the hierarchy of the written. In Hegel it is at

the lowest. If the peak of Hegel’s hierarchy is alphabetic phonetic writing, then

its nadir, according to Derrida (1982), is that of the machine: “Number, or

equally, that which can do without any phonetic notation”. Mechanical writing:

words that are not spoken, that are not thought. Formal, abstract: in short,

dead.

The products of the machine have their status clearly assigned. An ‘art

machine’ is in this context a contradiction: if it is machine, it is not fine art; and

so also if these terms are reversed: if it is fine art it cannot be machine. In fact,

neither the machine nor its products can be fine art. Fine art "must seem to

be as free from all constraint of arbitrary rules as if it were a product of pure

nature." (Kant, Critique of Judgement, section 45)

An art machine in such a theory is doubly mistaken. It can afford no artistic

pleasure, not itself being the product of free creativity nor is it capable of free

creativity. And it is of no practical use, as its works also lack utility. The

practical and mechanical, the rule bound and the unfree, are not unworthy

and have a place. The only error would be if this place were to be exceeded.

Rules in Kant do have a place, but this is best confined to the mechanical

arts.

However, contemporaneously the machine and human are not conveniently

distinguished. Uncertainty about their relative status is not resolvable so long

as this is true. With computer-using art the ambiguity over the status of the

machine is persistent and hard to resolve. Some such as Simanowski, 2005,

(on combinatorial text/text machines) simply opt for accepting the case, and

“consider and name such machines of combination as works of art

themselves”.

I also return to the question of rule following, at several points, later in this

thesis. That ‘true’ art is sometimes posed as inimical to rules and a preserve

of the intuitive I am sensitive to. This attitude has a long and respectable

 70

lineage and I come back to it below. Of course much process driven, system

oriented work has a strong rule oriented aspect, as I have mentioned in my

remarks about conceptual art. This, I think, has done something to rehabilitate

my subject.

Nevertheless, what I have done is to investigate a rather textual approach to

the question of rule following. I have done this instead of staying with other

sorts of instruction based art practice associated particularly with the 1960’s.

This textual approach I have pursued by way of discussion of the text

machine. I have undertaken this task by programming my own. In the next

Chapter I focus on the text machine more intensely, particularly where

computerisation appears to raise some interesting issues.

 71

So long, Emily, it was great while it lasted, but you were a robot, you had no heart
 Umberto Eco

Chapter 4: Inscriptions

1. Introduction

In this Chapter I argue that text machines, and the texts they write in

collaboration with humans, are a widespread experience. While investigation

of generated text has often focused on the (for me, rather sterile) question of

who (what?) wrote the text, in our daily lives we commonly encounter text

machines. (There are some signs that research may catch up with these

developments36). Whilst questions of authorship can be undecidable (for

reasons I discuss), in our mundane contacts with such machines this question

may scarcely be raised at all. There is in fact a blurring of distinctions between

human and machine that we saw in the theory of posthumanism (above).

In this Chapter I begin by developing some ideas about how to think of

machine written texts. I then go on to transpose some of these ideas to a

discussion of the employment of text machines in actual use. What present as

problems in evaluating the text in a literary context, I believe, should make us

more critically aware when we broaden our discussion to text machines in

everyday life. Also, I engage with the question of how artists have begun to

exploit the possibilities of machine made texts.

36

 For instance, academic interest in ‘folksonomies’, a user-lead, bottom-up, rather than a top-
down taxonomy, method of tagging information for other users to access on the Internet: see
http://del.icio.us/ which uses this form of tagging.

http://del.icio.us/

 72

2. Text Degeneration?

It may seem that the text machine has not found wide use in the visual arts.

To the extent that this is so (and I will qualify this assertion in a moment), a

few reasons may be advanced.

There are real difficulties in programming a computer to write anything of

interest to human readers: ironically, the more interest a computer text has

the more likely it is to be considered a computer-assisted not computer

authored text. Secondly, the legacy of the Turing test has gone some way to

skew discussion of machine texts. The Turing test, in a game of imitation it will

be remembered, is the test of whether the computer can pass as human. So,

attempts to program literature have been directed at imitating, often in parody

form, human-authored texts. Thus Douglas Hoftstadter’s37 groundbreaking

use of Recursive Transition Networks to generate text is entitled “A Little

Turing Test”. With the Postmodernism Generator (1996) the point was proved

beyond doubt: under certain conditions it is possible for an obscurantist

computer text to pass as an opaque human text38. Since then, my observation

is that there has been comparatively little useful work going on in

computerised writing. Computer texts have been posed in the context of a

series of ‘firsts’ – from Edwin Morgan’s39 The Computer’s First Christmas

Card, to the Dada Engine’s (the program behind Postmodernism Generator)

first famous literary fraud. Once done, who was really interested in a second?

Lack of utility is a further issue. Blay Whitby (2002) makes the point that there

is, “little practical use for a machine aimed specifically at success in the

imitation game” (p. 62). It is scarcely surprising that while a few poets and

37

 The texts seem to have been produced in 1975 judging from the evidence, such as the use
of a 1975 edition of Art-Language. (Incidentally, Andrew C. Bulhak, 1996 p. 1, says Hoftstader
illustrated his method with 13 examples, when in fact there are 12, proving perhaps that
Bulhak isn’t a robot, proving perhaps I am).

38

 The article is, "Transgressing the Boundaries: Toward a Transformative Hermeneutics of
Quantum Gravity". It was published in Social Text #46/47, pp. 217-252 (spring/summer
1996). It may be found at:
http://www.physics.nyu.edu/faculty/sokal/transgress_v2/transgress_v2_singlefile.html.

39

 It was not in fact written by a computer.

http://www.physics.nyu.edu/faculty/sokal/transgress_v2/transgress_v2_singlefile.html

 73

other enthusiasts continue to program the better-established genres

(emulating what humans may already do well), in computer applications the

focus has shifted elsewhere to more specifically useful computer genres. Julia

the Chatterbot not withstanding40, in general, it may appear the use of

computer-generated text has degenerated from overt imitation to self-declared

spoofs and pranks. There are many examples on the Internet. There is a

multitude of headline, pop band name, mission statement and other software.

Their purpose is diversion. (Natural Language Generation, as opposed to

random text generation is another project entirely and there is a substantial

body of literature both on and off line.41)

However, as we will soon see (in section 4, below), text machines have their

practical uses. Also, paralleling this situation, a new generation of visual

artists, many working on the Internet, have used the potential of the computer

to make work that represents a development in the use of text machines as

understood by this thesis. I return to this in section 4 below. Jon Thomson and

Alison Craighead’s Automated Beacon (Plate 4) is the sort of work I have in

mind: http://www.computerfinearts.com/collection/thomson_craighead/beacon/index.html 42.

Like several other works I discuss below, this makes no attempt to pass itself

off as anything but (an automated, therefore) a machine work.

40

 See Murray (1997) for a discussion of Julia’s career in chat rooms.

41

 See the Cosign website for instance http://www.cosignconference.org/. Manurung’s thesis
is about NLG generation of limericks (I have to say, they are not very good, but this may not
be the point). See also see Dale et al, (2004) for a discussion of some practical applications
of NLG.

42

 Thomson and Craighead (2005) “The beacon continuously relays selected live web
searches as they are being made around the world, presenting them back in series and at
regular intervals. The beacon has been instigated to act as a silent witness: a feedback loop
providing a global snapshot of ourselves to ourselves in real-time.”

http://www.computerfinearts.com/collection/thomson_craighead/beacon/index.html
http://www.cosignconference.org/

 74

Plate 4

However, rather than simply dispensing with the problem out of hand, in the

next section I linger for a while longer over the vexed question of authorship. I

do this by subjecting to scrutiny the idea of reverse-engineering as already

advanced in previous Chapters.

 75

3. Reverse-Engineering a Text

How do we know the machine apart from the work it does? What is a unit of

work for a writing machine? Sonnets? PhD theses? Perhaps for a moment we

might think of this text as computer generated. Or then again, maybe the

machine did not write the text: instead the text wrote the machine. There

never was a machine. It was a figment of the text, its spectre. There's a word

for machines like that; it comes from computing: vaporware. Vaporware:

"Computer-industry lingo for exciting software which fails to appear"43.

That (vaporware) was a compound word, combining connotations of

insubstantial exhalations with those of solid commercial goods. (What is

surprising in that? Computing is after all an industry whose commerciality is

built on the patenting of ideas).

Perhaps we might try to reverse-engineer the present text, working back from

text-product to machine-producer (if there were a machine).

“Reverse-engineer”: engineering reversed. Engineering: product specification

turned into product. Reversed: begin with product, work back to specification.

Why do reverse- engineering? “reverse engineering n the taking apart of a

competitor’s product to see how it works, e.g. with a view to copying it or

improving on it” (Chambers Dictionary).

Reverse-engineering proceeds from the many to the one: many products may

implement the same specification. Thus I say this text, but if there is a

machine, the machine is the “top level specification” and this text is but one of

its possible implementations. And if there is a machine, can we expect to

discover it entirely from working back from the text? No, “it is not possible in

practice, or even in theory, to recover everything in the original specification

43

 John Naughton (2002) p. 299.

 76

purely by the studying the product” 44: the machine will always in some way

elude such approaches.

But worse, perhaps we would find nothing at the ‘origin’. We might attempt to

work back only to discover an absence where a something should be. There

would be no machine, merely vapour.

Which is the top level, the unitary, the one, and which the many, the low, the

mere product?

Is it the present text that produces in the form of vapour a machine to account

for its writing? Or is it the other way round, there is a machine that

manufactured this text, and a potential multitude of similar texts?

(It is easy to imagine a maze of proliferating and reversible passages between

texts that produce machines that produce texts that produce machines. And

so on. Without end).

One resort might be to defer the question of the authorship of machine texts,

and invoke Hoftstadter’s idea of “meta-authorship”. This is a theory of levels of

authorship. Instead of the usual mono-authorial, if I may put it like that, layer

(“the author”), we have at least two layers. Hoftstadter is discussing music; we

have the machine that (“who”?) is the author of the score, and a human who

is the author of the program. The author like the economic then: determination

in the final instance.

This is all fairly well if we do not raise the inconvenient common circumstance

that in coding circles programmers share code45. One response may be to

44

 David Musker (1998) http://www.jenkins-ip.com/serv/serv_6.htm

45

 An example: I have adapted in my Virtual Dictionary (see Chapter 6) something called
demo_randomtext.pl, part of the parse:: RecDescent distribution. Now, parse:: RecDescent is
a Perl module. A module is basically a publicly available program that your own programs
may use, saving you the work of writing it all out yourself. This, parse:: RecDescent, is written
by Damian Conway. It might be reasonable to assume that he also wrote
demo_randomtext.pl. I might have thought so too if demo_randomtext.pl had not contained a
‘bug’. I mailed Damian with this (known as ‘bug fix’), and he mentioned that he had not written

http://www.jenkins-ip.com/serv/serv_6.htm

 77

credit whoever ‘signs’ the work, whoever else has involvement; the common

situation in the visual arts. Because of such eventualities and the sheer

difficulty of resolving the problem, a more rewarding approach may be to

evaluate what sort of text it is we are dealing with.

However, this is rather difficult. Aarseth’s (1997) worthy attempt to clarify a

key question of computerised literature (“Who or what writes?” p.132) is not

very viable. So Aarseth’s typology of Preprocessing, Coprocessing and

Postprocessing has to presuppose the information it is expected to produce.

That is to say, Aarseth’s decision to accord Racter’s (1984) The Policeman’s

Beard to both “Preprocessing” and “Postprocessing” depends upon accepting

that the whole thing was not cooked up – which is exactly the thing that we

cannot be wholly sure of. Or maybe its text was not revised at all, but is as

claimed (in the Introduction by William Chamberlain and in contradiction to

Aarseth’s own assessment) the work of Racter alone. As we cannot tell, we

cannot place the text into Aarseth’s typology with any reliability.

It is worth considering that these questions, discussed in reference to

machine texts, are perhaps a mise en abyme of a greater question of the text,

its origins, its authors, its boundaries.

Another way of putting it is that this discussion of texts is a ‘sub routine’ of the

greater program known as Deconstruction. And by uttering its name at this

point do we encounter this sub routine's 'exit' command, and must eject the

loop, and return to the main program? I think not. Rather, to continue the

metaphor, I will stay in the loop and iterate over questions that may attach to

this text or a text like it, a human-machine collaboration. I could say further, I

will stay in the loop until it has run its course and then return a value to the

main program (this is what sub routines are meant to do). I could, but I wish to

resist this reduction of the current investigation to a minor moment of some

greater project.

demo_randomtext.pl so had not known about the bug. Meta-authorship is as hard to decide
as authorship.

 78

With the authorship of reputed computer novels and poems, it is often

impossible to decide who wrote the text. This is still more the case because

the text is usually severed from its programming. Pleasurable confusion

flourishes in such circumstances.

An example: at http://www.collectionfaq.com/writing-machine.html there is

this entry:

“WRITING MACHINE - Definition
A writing Machine: abstract configuration, its theoretical class of instructions. See
also Inscription, Instructions, Writing Machine, Code, Rule, Computer. ...”

This appears on www.collectionfaq.com’s web page along with entries for

software and toner and web dictionaries. But, “abstract configuration, its

theoretical class of instructions” is a recursively generated text by

http://www.in-vacua.com/cgi-bin/machine_definition.pl. It is in fact randomly

generated and probably nonsense. However, anyone clicking WRITING

MACHINE - Definition will get a new and equally spurious definition. It has

inserted itself into a legitimate discourse, to do with online commerce and

academic endeavour.

4. ‘About typing characters from a picture’

Whilst we may, in our prosaic moments, not come into contact with machines

that write poems (although they are on the Internet for those who have an

interest), a text machine flourishes everywhere machine-texts are required.

But this is not to say that the quality of their writing has to be very high.

Functionalism, not pleasure is their purpose.

The text machine is everywhere; so common we barely notice it. The word

processor (Microsoft Word’s in the case of the present text) includes a

collection of them masquerading as this Wizard, that Wizard, and the

infamous ‘Spelling and Grammar’ that so deplores the passive voice. Of the

http://www.collectionfaq.com/writing-machine.html
http://in-vacua.com/cgi-bin/machine_definition.pl
http://www.collectionfaq.com's/
http://www.in-vacua.com/cgi-bin/machine_definition.pl
http://in-vacua.com/cgi-bin/machine_definition.pl
http://in-vacua.com/cgi-bin/machine_definition.pl

 79

text machines we occasionally encounter, novel-writing and non-directional

therapy get most of the scant attention afforded their number, whilst their

industrious cousins go about their tasks and meld with us in the fulfilment of

that process.

Commercial and bureaucratic interests46 have concertedly taken up, for their

own uses, some of the basics of computerised literature, particularly

randomisation and the template (see Chapter 6 for a definition of these

terms). Text machines are not necessarily works of art or literature as Murray

(1997) mentions in her tract on electronic literature.47

The two areas in which this is most common and noticeable are in online form

completion and password dialogues. The password and the questionnaire are

identified as characteristic forms of contemporary social control. Why?

“Code is a language, but a very special language. Code is the only language
that is executable…So code is the first language that actually does what it
says – it is a machine for converting meaning into action. (Italics in the
original. Galloway/RSG, 2002, p.352).

To be executable is the standard to which all coding aspires. Jean Baudrillard

(1993, p. 73) realised it early – 1976: “binarity and digitality constitute the true

generative formula which encompasses all the others and is, in a way, the

stabilised form of the code". Baudrillard’s "code" is none other than digital

code, binary code; but it is code that has escaped from the computer and has

infected human society. It does something: it digitises the social.

What is this digitisation, what does it comprise? The computer is the Lab

condition of the investigation of this question. An alphabet of on and offs, the

46

 Also in an amusing mimesis, illegal capitalistic ventures. See Matthew Fuller (2003),
particularly It Looks Like You’re Writing a Letter, for a discussion of email scams using
Microsoft’s letter Wizards. (These appear to be, fundamentally, template systems). As Fuller
writes, “The believable template, hooked up to the mailing list database, is an economic
machine” (p. 147).

47

 Text Machines are not necessarily poetry machines, art machines, novel machines, nor
indeed, necessarily producers of corporate home pages and love letters, to cite two examples
Murray (p.189) mentions. They may do these things, or any number of others.

 80

digital is at bottom a discontinuous signal. The discontinuous has a bound and

a measure: it may be manipulated exactly, to the limits of our control

structures. Afforded a numerical weight, it may be modified according to some

algorithm. It is this precise quantification that sets apart digital media from

earlier, anticipatory, media (a point Manovich, 1999, makes).

If this is what the code is under the microscope, Slavo Zizek's (2004) “'new',

digitised capitalism" (p.185) seems to be what it is once it has escaped from

scrutiny in a network of computer-bunkers. This is the world of Baudrillard's

(op. cit.) "great festival of Participation", of a "myriad stimuli, miniaturised

tests, and infinitely divisible questions/answers" (p.70). The isomorphism

between the model of the computer and that of capitalism is a point that

Charlie Gere (2002, p.46) makes, whilst warning against technological

determinism48.

And there now are innumerable question and answer dialogues governing

many aspects of life both on the Internet and off it. There is no shortage of

artwork that engages with this situation. For instance a quite well known

example is THE INJUNCTION GENERATOR at http://ipnic.org/, which turns

corporate template filling on its head. Another is at http://status.irational.org/:

The Status Project, a complex form-filling piece of software49.

Code, in these contexts, has at least two meanings. Code can mean a code of

conduct or behaviour, and code can mean a form of encryption. However, it

by now should be apparent, the two are not entirely separable. On the

contrary, encrypted codes can drive social compliance. They may do this in

part by their generation of texts that work to further legislate action. I now

proceed to discuss this in more depth.

48

 “Turing’s conceptual machine, capable of being reconfigured in an infinite number of
different states, is the perfect, idealized model of capitalism as universal machine, in which
different phenomena, labour and commodities are homogenized in order to be exchanged,
manipulated and distributed.”

49

 Gere (2002) reminds us usefully of Hans Hacke’s prescient combination of conceptual art,
computers and the questionnaire format: Hacke’s 1970 Visitor’s Profile, “a parodic
computerized questionnaire system” (p. 108). Gere observes much net.art reprises earlier
work (ibid. p.111).

http://ipnic.org/
http://status.irational.org/

 81

Plate 5

MSN

The above image appears on a web form from MSN. It has a use. It prevents

‘spambots’ signing up for email accounts. You must copy the characters in the

picture. In the words of MSN:

“You must type the numbers and letters you see in the picture to confirm that
a person is trying to access the page, rather than an automated program. This
helps keep automated programs from creating fraudulent accounts or
misusing accounts, for example, to send large amounts of unsolicited e-mail.

In most cases, automated sign-in programs can't recognize the numbers and
letters in the picture”.

From, ‘About typing characters from a picture’:

https://help.msn.com/!data/en_us/data/passportv31.its51/$content$/PP_TROU_REG_TypeCh
aractersFromAPictureToSignUp.htm

But why should ‘automated sign-in programs’ have difficulty recognising

numbers and letters in a picture but not in typewritten text? Why the selective

illiteracy?

Spambots and other automated programs, in fact programs in general, do not

‘see’, nor do they really read. Spambots seek for characters in the ASCII

format; they search for character strings in ASCII mode, but not optically.

ASCII keys have code designations assigned in the operating system (see

Hillis, p.55). In other words there is a strong connection between code and

https://help.msn.com/!data/en_us/data/passportv31.its51/$content$/PP_TROU_REG_TypeCharactersFromAPictureToSignUp.htm
https://help.msn.com/!data/en_us/data/passportv31.its51/$content$/PP_TROU_REG_TypeCharactersFromAPictureToSignUp.htm

 82

character, between letter and machine language. But a human being reads

the visual50. In most cases it is of little practical importance to a human reader

whether there is a code reality behind the visual appearance or not. Whether

it is charcoal or pixels, the text may be read. To a ‘spambot’, however, there is

a world of difference at the code level between a gif and a character string. A

Softbot (software robot) could not discern the difference between the image of

a letter above and the image of a tree (although sophisticated pattern

recognition software might). It would look in vain for a letter ‘A’, ‘B’, or

whatever.

A human deciphers the image above; a human enters, hopefully correctly, a

character string: performing a translation from something the machine does

not read to something it does. Human: intermediary between two programs. If

‘yes’, you pass. If no, try again.

Computers work on Boolean logic (Hillis, Chapter 3, or Joseph

Weizenbaum’s, Chapter 3: ‘HOW COMPUTERS WORK’). This constitutes the

translation of logic into a few relatively simple operations. And in this world of

‘either’, ‘or’, ‘and’, if the letters you enter matches you succeed, if not, not.

In these dialogues in which two different languages are ‘spoken’, we have a

form of text machine. This machine generates unique random passwords. The

user enters them into a template form where they are checked against a

pattern. If the user succeeds, they gain access. Words in our language are

effectively turned into keys (and keys to key strokes), keys to a machine you

may access, or not.

50

 Visual tests have been criticised for excluding visually impaired people (Spam-bot tests
flunk the blind http://news.com.com/2100-1032-1022814.html. Sometimes these web
dialogues have an audio version.

http://news.com.com/2100-1032-1022814.html

 83

Plate 6

We see here what may happen when a text machine, a machine that writes, is

computerised. Word and code interact51 A work that deals ironically with the

differences and dependences of code and image is my own src (html

abbreviation of “source”) at http://www.in-vacua.com/src1.html, a work that

simultaneously displays the image’s code and the image (selected at random

from a database using a user entered search term and source code. See

Plate 6).

Code is converted to word and word converted back to code. But in so doing

other transactions take place. We are checked, as much as what we write is

checked: a Hotmail account is a fairly innocuous example.

http://www.in-vacua.com/src1.html

 84

5. Real-World Scenarios

There are many situations where the two connotations of code (social code

and computer code) interact. But brute ID checking and permission/

permission-denied situations are only the most overt. Lawrence Lessig

(1999), in his Code and Other Laws of Cyberspace, argues persuasively that

what he calls the architecture of systems compels what may and may not be

done within them. In computer terms, this amounts to how they are written

and for what purpose. (Lessig gives, amongst others, the case of the right to

log-on anonymously and its refusal, and how this determines behaviour in

various ways).

Galloway (2004), an admirer of Lessig, develops these perspectives further in

his Protocol. In his analysis the term is employed variously of specifically

Internet protocols and in a wider usage to typify contemporary social

arrangements. There are, however, some ambiguities and difficulties in the

terms usage in this latter context.

He demonstrates, I fear with unconscious irony, a marked tendency to

imperialise and centralise, as he finds “protocological” tendencies everywhere

he looks: in the world, in the analyses of Hardt and Negri’s Empire, Deleuze,

and Foucault.

Heavily indebted to Deleuze, Protocol fails to substantiate Galloway’s central

claim (perhaps it should be his decentralised claim) that "I consider the

distributed network to be an important diagram for our current social

formation" (p. 11) Throughout, there is an unevenness of tone, as at times he

appears to advocate this society as one to achieve, at others to describe it as

already being in existence. He does succeed in describing these networks

and gives real examples (of the highway system for instance). He also

summarises Deleuze and Guattari's avocation of decentralised social

networks as preferable to centralised ones. But he offers absolutely no

evidence that that we are actually living through a shift "from central

bureaucracies and vertical hierarchies toward a broad network of autonomous

 85

social actors" (pp. 32-33). He therefore never makes good his promise of

extending his analysis from the function of protocol on the Internet to map the

"new millennium". He casually assumes "a larger process of

postmodernisation that is happening the world over" (p. 33). Specifically, he

does not persuade that the current social formation really fits with the idea of

distributed networks with "no chain of command, only autonomous agents" (p.

38). To do this he would have show that the diagram of a distributed network

really maps the world of post 9/11 and the occupation of Iraq. A difficult task.

However, that we follow rules (without necessarily knowing it) when we

interact with computer systems and that these are written (but not by most of

their users) is patently true. It is the fact that rule-governed behaviour is for

the most part not explicit to its participants, and not under their control, that

may comprise one of the most insidious aspects of this situation. Rule

following becomes second nature and normalised without awareness; but not

to rule makers who are highly conscious of the need for a smooth-operating,

rule-formed environment. WC3, the World Wide Web Consortium

http://www.w3.org/Consortium/ (the body that regulates the Web), is engaged

in this activity. Not only does WC3 develop rules (read “protocols”) but also

the language in which they are expressed (Rule Language Standardizations:

Report from the W3C Workshop on Rule Languages for Interoperability,

2005). The WC3’s thoughts are, in fact, informed by cognisance of other

social rule-using situations52. This represents an inequality that will arise again

later when I discuss Code in the next Chapter. Those who make rules are in

an advantageous position relative to those who do not.

52

 “Real world scenarios helped illustrate the need for rules and ontologies (including
anatomical knowledge to label brain parts, situation awareness using OWL and Rules, and
others such as RDF in the automotive industry, in access control, and rules for geospatial
applications).” http://www.w3.org/2004/12/rules-ws/report/

http://www.w3.org/Consortium/
http://www.w3.org/2004/12/rules-ws/report/

 86

6. Conclusion

Where does all this leave my discussion of the text machine? A language and

some rules do not in themselves constitute a text machine as developed

above: with the computer the text machine lives within its environment and

must be written in their terms. This machine may be a harmless artwork, or it

may be some other more commercial, military or bureaucratic application.

Whatever it is and whatever it does, it is a machine within a greater machine,

a machine of machines, within the greater social machine (to borrow from

Deleuze’s vocabulary).

Furthermore, a machine rarely if ever works alone. Machines use other

machines to perform their tasks. Sometimes these are other text machines.

(See my discussion, Chapter 6, of how ‘src’ uses other machines to complete

its task). The Internet provides the condition to enable, by virtue of its

networking, the cooperation (or competition) of numerous machines.

The text machine is everywhere. It is writing everywhere and at all times. If we

wish to find text machines, if we want to read – or know how to write – a text

the answer is probably under our nose, on the desktop.

In the next Chapter I develop some ideas about the relation of code and

writing begun in this Chapter.

 87

all the clouds turn to words
all the words float in sequence
no one knows what they mean
everyone just ignores them

 Brian Eno

Chapter 5: Code

1. Introduction

Text machines historically precede the digital computer. They may be written,

and made, without recourse to computerisation. Before the computer, the text

machine was an analogue device: it was imprecise and slow, such as Tzara’s

instruction to cut up a newspaper or Queneau’s poem, with their handicraft

mechanics of scissors and glue.

The computerisation of the text machine is its transformation into something

digitally precise and industrially usable. The computerisation of the text

machine means it is now tied, like everything else that shares its fate, to a

second articulation system: that of the computer’s program code. Control of

this second articulation system promises control of the first. It has also

meant, as I have mentioned, the exponential growth of these machines that

now penetrate every part of our existence. But how is this aided and

facilitated?

The condition of possibility of a text machine’s machine-text is not that it is

written but that it is re-written. Any of its printed texts, whether printed to

 88

screen or to paper, are cross-sectional slices of that machine’s text

production53.

The (false) impression that these are, on the contrary, finished textual

objects54 is promoted by – so often – these texts’ function, in the form of

quotations, as relics of absent machines. (These critical writings are often the

reliquaries of long departed machines). No doubt this misunderstanding arises

because most (literary) text machines are experienced, most of the time, if at

all, not in their active functioning, but in this arbitrary division of their texts into

the static quotations that appear in the slender literature of this subject.

“All programs are texts that read texts and write other texts”, Jay David Bolter

(1991, p. 9) writes. In the box (above) is a quotation from a Google’s cache of

a program running on my web site55. Google’s spiders ‘read’ the text and

saved it. Robots read robot literature. When the software robot entered the

site, the program ran and printed the text. No other readers or writers were

required or present.

53

 This formulation, I am aware, echoes that of Deleuze and Guattari’s “desiring-machine”
(which, according to them, a work of art is, p33) in Anti-Oedipus: “A machine can be defined
as a system of interruptions or breaks (coupures). Every machine, in the first place, is related
to a continual material flow (hyle) that it cuts into” (p. 36).

54

 Of the exhibition, Generator, Geoff Cox (2004) writes: “The exhibition title referred literally
to the term ‘generator’ in describing the person, operating system or thing that generates the
artwork, shifting attention to these productive processes, rather than end products or the
commodity form” (p. 9).

55

 http://www.Google.com/search?q=cache:5LChCm9u36MJ:www.in-vacua.com/cgi-
bin/generator.pl+markov+text+in-vacua&hl=en&start=2

a second possible strategy: the construction of an unhealthy obsession

with triangles…

http://www.google.com/search?q=cache:5LChCm9u36MJ:www.in-vacua.com/cgi-bin/generator.pl+markov+text+in-vacua&hl=en&start=2
http://www.google.com/search?q=cache:5LChCm9u36MJ:www.in-vacua.com/cgi-bin/generator.pl+markov+text+in-vacua&hl=en&start=2

 89

A ‘software robot’ is itself a program that ‘reads’ (with the qualifications in the

previous Chapter) other programs: preliminary evidence in Kittler’s (1999)

silicon Armageddon: “Instead of wiring people and technologies, absolute

knowledge will run as an endless loop” (p. 1).

It is possible to write a machine that reads a machine and to instantiate it in

the form of a computer’s software and hardware.

Bolter makes this distinction: “Formal languages are operational: they direct

the computer's actions. Human languages are merely stored in the machine,

as texts to be divided, re-combined, and presented to readers” (op. cit. p. 10).

This is true, but its generality disguises the fact that words cannot simply be

stored in the machine unaltered; they do not pass through the guts of the

computer like a stone, but must ultimately be transformed into machine code,

as must the program. It is true that human languages in the computer are not,

in Bolter’s terms, “operational”, but they may only undergo the processes

Bolter describes if they are first transposed into a code the machine may use.

They have to be transposed again if they are to be re-presented to a human

reader.

In this Chapter I describe how two articulation systems coexist, how one

effectively produces the other and what this means for us, the users who are

also implicated in these machines and visual artists who want to work in this

area.

 90

2. Code and “The Code”

Blocks and snippets of code stitched together can make programs.

Alt_Img_Tate (http://www.in-vacua.com/alt_tate.html) is an example. This is a

small part of its code:

Plate 7

This code does this:

<script type=text/javascript>
setTimeout(' document.location=document.location' ,10000);
col=255;
function fade() { document.getElementById("fade").style.color="rgb(" + col + "," + col + "," +
col + ")"; col-=5; if(col>0) setTimeout('fade()', 200); }
</script>

http://www.in-vacua.com/alt_tate.html

 91

Plate 8

It fades in the text.

Code is executable here in a different way to any social code. All things being

equal, the above code will produce regular and predictable effects so far as

the on-screen event is concerned. No social code can be written or run with

the same efficiency. But no social code is as fragile. Change this:

);

to this:

)

and the code may break.

 92

Furthermore, there is a radical difference between the code block and the

legible text it makes. This is not so with the sort of code that Deleuze and

Guattari, or Baudrillard, are talking about, for instance. No matter how

abstract the social code, no matter how arbitrary, what one is to do must be

known if the code is to be followed, even if one does not know why. This, in

Deleuze and Guattari’s terms at least, is the whole point of (re)coding: to

enlist conscious support in the economic, to encourage libidinal investment in

the economic process.

Some computer code is like the code snippet quoted above: essentially a

simple instruction to produce a definite effect. But there are also code

processes, not only illegible to all but the machine, but also unseen, that

produce textual events. (In normal circumstances such code is often not

visible. There are those who post their code on the Internet. Even so, if we

were to compare the code with the screen-grabs above, we would readily

experience the disjunction between these two levels).

The codes that drive this process are practically interchangeable: it is the

rules and instructions that are the structure of the machine. These too may, as

I have suggested, be varied: and the digital has been shown to facilitate this

process.

Inscriptions, or possibly what Deleuze and Guattari call “jargons”, are

constantly churned out by the social machine and experienced at conscious

levels. They too are re-writable and constantly rewritten. Their production is

driven by the rules and instructions of the social machine of capitalism, what

Deleuze and Guattari call the “axiomatic”. However, the difference with

Deleuze and Guattari is the axiomatic cannot be changed (axioms cannot be

changed, they are axioms) but merely added to. Rules and instructions are

interchangeable, replaceable, and (consequently) temporary. They exist to get

something done.

And perhaps, anyway, this is time to settle accounts with Deleuze and

Guattari: because if contemporary society can be viewed as machine, then

 93

the question of the role of code must be settled also. On page 251 of Anti-

Oedipus we may read “… capital figures as a directly economic instance, and

falls back on production without interposing extraeconomic factors that would

be inscribed in the form of a code”, but on page 260 that modern societies

“recode with all their might”. On page 251 “capitalism thus proceeds by means

of an axiomatic and not by means of a code”, but on page 257 they write of

“…our modern way of “imbricating”, of sectioning off, of reintroducing code

fragments, resuscitating old codes, inventing pseudo codes or jargons.”

The way to resolve this apparent conundrum may be to go with the spirit of

the text, not the letter, perhaps following the treatment of Anti-Oedipus as in

Frederick Jameson (1999). Jameson essentially accepts capitalism’s

‘axiomatic’ reality (that is to say, its placing of the economic, profit and

accumulation in other words, over all else). However, he also proposes that

capitalism needs to “transform bits of the axiomatic back into so many

codes… to invent older forms of coding to supplement its impoverished

structures” (p.20). These codes are not what they were in pre-capitalism.

Code in capitalism is reinvented and old codes reused to strengthen

subscription to what might otherwise seem a purely economic enterprise,

thereby running the risk of weakening it. Jameson writes “[t]his incapacity of

the axiomatic, or of capitalism, to offer intrinsic libidinal investments to its

subjects…is surely one of the most interesting and promising lines of

investigation opened up by the ‘Marxism’ of l’anti-oedipe” (ibid.). However, this

project is not really pursued in Anti-Oedipus, possibly because of the lack of

resolution within the text of this issue of code that presents itself initially as

conundrum.

It will be apparent by now that concepts derived from computing, particularly

computer code, are easily reached for as explanatory tools. Despite

significant differences this may not be surprising, as computers are involved

with many of the real social and economic processes of contemporary

capitalism.

 94

3. Code and Self-Reflexivity

The algorithm and the programming code are (usually) invisible, whilst the text

can be read. Furthermore, the unseen (code) writes the visible (text). We can

see their work, but the algorithm, and the program code it is written in, are not

presented: we only read the words.

The words, something printed to screen, or file, or paper, and the data that is

taken as an input to the program, here have a dual identity: they are

transposed into program code, manipulated, and then transposed again to

words that we may read. In this, it will be apparent, the reader is experiencing,

at best, only half the process.

Inke Arns (2001) suggests two texts, the “phenotext” and the “genotext”; and

the surface (phenotext) cannot be understood on its own, without the

genotext:

“My hypothesis is that the notion of “loss of inscription”, with its focus
exclusively upon the surface text as the “text” of net art or net literature, is
based upon the wrong formulation of the question. It is not sufficient,
regarding the “surface effects of software” – the dynamic presentation of data
by staging information and animation, to speak of a “performative turn” of
graphic user interfaces (1), because this view limits itself to the performativity
of those surfaces. One should rather assume the existence of two texts, a
“phenotext” and a “genotext”, when examining net art and net literature
projects. The surface effects of the phenotext, i.e. moving texts, are generated
and controlled by other underlying “effective” texts, programming codes or
source texts.”

(These terms, genotext and phenotext, are perhaps derived from Richard

Dawkins’s, 1982, and Susan Blackmore’s, 1999, use of phenotype and

genotype. However, Dawkins repudiates any crude determinism between the

cultural phenotype and the genetic code. As I have argued, there is also not a

simple, one-way and determining relation between code and text).

The fact is, of course, in ordinary circumstances programs are access-

protected whilst the texts they produce are not. This comprises an inequality

 95

between user and programmer/machine maker. The accessibility that

Finnemann (below) lauds in his discussion of digital media is logical, not

actual. It is prevented by restrictions both practical (you do not know the

password to my FTP56 program, you cannot, unless you crack it, rewrite my

programs) and legal, in the licensing of proprietary software (you lease the

right to use, not buy the right to change57). The fixed program’s effective

priority over the moving text occasions Arns to refer to code as “law”, a by

now familiar formulation.

However, in some ways these strictures apply particularly to digital media,

which I have been careful to distinguish a text machine from. So, we do not

usually know the algorithm that performs the processes of a text machine

from that text when a text machine is computerised. Computer algorithms, as I

have said previously, should not be confused with the rules and instructions of

the text machine. Even if we do know the algorithm, we do not necessarily

learn from this anything of the text machine. This is because any number of

algorithms may produce a given text sequence. In Fields’s terms (2002), as

discussed above, a computation can be achieved by any number of

algorithmic processes: this is true also of the text manipulations of a text

machine.

Clearly therefore, neither the algorithm or the code, so long as we are

referring to program code, is essential to our machine. Word sequences may

be generated by different algorithms, hardware, and by different codes. This is

obvious from the fact that well-known programs are often available in different

languages and for different operating systems. Code is law, but only within the

domains where it is sovereign.

The duality that we are talking about here – the text we read and the code and

algorithms of the computer that we do not – is a source of some discomfort in

56

 File Transfer Protocol. It is used to upload files to the Internet.

57

 “Licensing software is different than purchasing a car or house in that you have the right to
run the software but there are ongoing requirements that determine how the software can be
used.” http://www.microsoft.com/licensing/resources/default.mspx

http://www.microsoft.com/licensing/resources/default.mspx

 96

‘software art’ circles. It contradicts a formalism that is perhaps inherited from

modernism, that we should have concern for the materials of a work's

construction. This is encountered in painting, sculpture and architecture and

elsewhere (structural cinema, for instance) in different forms, whether it is

Clement Greenberg's (1960) doctrine of the essential flatness of painting,

Brancusi's "truth to materials" in sculpture, or the foregrounding of steel and

concrete construction in brutalist architecture58.

From this arise all attempts to unify code and output in contemporary software

practice. A particularly interesting example is live programming59, where the

audience experiences simultaneously the programmer writing code and the

output of the program.

Such tactics are spectacular. The objection to them is should they become a

constricting orthodoxy, a self referential and prescriptive practice. It would be

a pity indeed if software practices should end in a similar cul-de-sac as the

painting of the Support-Surfaces group – a restrictive practice concerned with

its own conditions of physical production.

Nor of course can we confine ourselves to these physical conditions solely if

we are to understand fully a text machine (or anything else for that matter)

running on a computer.

There is much about a text machine that cannot be found by peering into the

guts of its code alone: its interaction with its physical and social environment

for example. Also, how its operator reads its output cannot be predicted from

an examination of its code. (I will return to these points in below).

Staying with text/code for the present, the problem is whether or not we can

understand the text without an understanding of the code upon which it

stands.

58

 See Simon Yuill’s paper, CODE ART BRUTALISM: LOW-LEVEL SYSTEMS AND SIMPLE
PROGRAMS http://art.runme.org/1107798902-7563-0/yuill.pdf for a parallel between the two.

59

 See Adrian Ward et al (2005).

http://art.runme.org/1107798902-7563-0/yuill.pdf

 97

Aarseth (1997) criticises Peter Bøgh Andersen et al’s (1994), The computer

as medium for neglect of just this matter. As Aarseth remarks: "The main

problem of computer semiotics seems to be the assumption that cybernetic

sign processes can be understood and classified by their surface expressions

alone" (p. 39-40). It is this for this reason, I suggest, computer signs cannot be

Indexical in the Peircean sense60. To be indexical there must be a direct and

invariant relation between event and sign, such as between weathervane and

the wind. But the relationship between a code event and sign is set by

convention, not by physics. Nevertheless once set (programmed) it is more

compelling than other conventional arrangements that characterise another

order of signs in Peirce, the Symbolic. This is because software controls

events, physical states, in the hardware. In short, I conclude that Aarseth is

correct to doubt the viability of Peircean semiotics in computing. This is

because of the coexistence and interaction of two distinct systems, something

Peirce’s semiotics could not reasonably be expected to account for.

Aarseth, himself, refers to the "textual machine" (p. 42) but does not go

beyond this phrase. Not unusually in this area, he is more interested in

discussing the text produced than the machine that produced it. His

discussion of machines is confined mostly to discussion of computer

semiotics. I have sought to establish the computer is a different machine to

the text machine: the former may simulate the latter. A text machine may, as

it were, inhabit the computer: it is not the computer. Questions of computer

semiotics must be distinguished from discussion of the text machine,

therefore: they are not identical. What are problems of computer semiotics

and what of text machines per se must be, consequently, carefully

differentiated. However, the computer poses problems of interpretation for the

text machine when the text machine is running on the computer.

60

 Therefore, I cannot agree with Javbrett’s employment of this term – without direct reference
to Peirce, admittedly – in this passage: “Within the Infome paradigm, The dominating mode of
the sign is not the symbolic, or the iconographic, but the indexical… The visualization is an
indexical trace of the reality, an imprint”. (NB “infome” is her neologism. Read, “Internet”).

 98

As Aarseth goes on to observe, the existence of several levels of signification

is not confined to what he calls “cybertexts” (human machine collaborations)

alone. He gives the example of a book being read aloud (two levels: graphic

and sonic). However, with a cybertext "the relationship might be termed

arbitrary, because the internal, coded level can only be fully experienced by

way of the external, expressive level" (p. 40).

As he notes, it is possible to describe program and data "in their own right",

but these are not "equivalents" to what goes on at the higher level. He makes

a similar observation, with different terminology, as Fields (above) – that

different coding can produce similar 'expressions' (computations).

Aarseth's preoccupation is to draw into doubt the project of the group around

Andersen to apply a semiological analysis to computer signs without full

regard to these arbitrarily related levels. This is not primarily my purpose.

Nevertheless, what implications does this problem of arbitrarily related levels

have for my theory of the text machine?

I said in Chapter 2 that a text machine might be completely simulated by a

computer because both its rules and instructions and its material – the text –

can be translated into the same language, that is, the computer’s binary

alphabet. This is unlike other situations where the instructions and the

materials are in completely different realms and cannot be unified in this way.

I gave the example of a Lawrence Weiner instruction. It is not possible to

computerise lathing, carpet, tins of paint and so on.

What are the consequences of both data (text in this case) and program (rules

and instructions of the text machine) being written in the same binary

alphabet? Again, this is to enquire more generally into what computers are.

The idea of a binary alphabet is one I take from Neils Ole Finnemann (1997,

1999). According to Finnemann this binary alphabet, consisting of two terms,

may translate any other semantic and syntactic system. It is, furthermore, a

notation system that by definition is content free and can be used, therefore,

 99

to represent any other “formal expression, whether data or rules” (1997, p.

145). It – the alphabet – is itself content free by virtue of the computer being a

universal, Turing machine. That is to say it must “be able to perform any rule

or programme (sic).” If this were not so, it “would be deprived of its

universality” (ibid. p. 144).

Finnemann explains that the storage of rules and data in the form of binary

code means data and rules are expressed in a text form. This comprises for

him the textualisation of sound and image media. This text may be accessed

at any point and edited. This means that data and rule may be varied, or

suspended, more or less freely. In Finnemann’s terms:

“There is one important aspect which will be of significance in all areas: a
great number of the restrictions which were formerly connected with the
physically bound architecture of the symbolic media are here transformed into
facultative symbolic restrictions which are implemented in physically variable
(energy-based) and serialized textual form” (ibid. p. 147).

The consequence for the text machine, along with all other machines, is that

its rules and instructions are subject to change or suspension. Rules may be

combined with other rules and for any period of time. Also, plainly, the

implications of the integration of communications (radio, television, telephone

etc), that Finnemann observes, cannot exempt the text machine when a

computer simulates it. It must share a common situation. This is not to say

that the text manipulations I have described must disappear and become

video poetry, or multimedia. It does mean the boundaries between one

machine and another are now arbitrary and may be subject to summary

alteration.

The fact that rules may be suspended or altered has fundamental implications

for the text machine as I have described it. In the past it was, of course,

always possible to vary rule and data. However, simulation by computer

means that easy alteration is possible by access to the program code – at

least in theory. This logical possibility is delimited in practice by countervailing

forces such commercial protection and the relative powerlessness of the

 100

average user to make any significant changes to the operating system within

which they work. Nevertheless, the practical bound that was previously

imposed by physical media largely disappears. This is not to say rules and

instructions disappear, but they are alterable invisibly, and no stable entity can

therefore be constructed from them.

Rules, no longer imposed from without, guaranteeing stability, instead “are

processed in time and space as part of and on a par with the ruled system,

implying there are systems in which rules can be changed modified,

suspended or ascribed new functions” (ibid. p.156). Finnemann calls this

situation a rule generating system. He contrasts this with rule dependent

systems, where the rule or rules are outside the rule-governed system. He

sees in this a more general and important tendency that embraces

philosophical and scientific discourses and constitutes, for him, an epoch

making change.

Rules do not only produce writing but are writing. Like anything else written in

the binary alphabet of the computer, they may be rewritten. That Finnemann

calls the computer’s binary code an “alphabet” is deliberate and important. It

indicates that we must be aware of what its code is. Unlike the usual alphabet,

the code has been defined as neutral or content free. It is that that allows the

binary alphabet to simulate other sign systems. (It is for such reasons that

Finnemann [1999] defines the computer as a “multi-semantic machine” [p.

358]. Some may find this controversial, as it might appear to attribute

intelligence to the machine itself: that is, it might suggest the machine itself

performs acts of semiosis. My reply would be that one does not require a

thesis of artificial intelligence to accept the Finnemann thesis. That the

machine may not have, and has no need of, a comprehension of the semiotic

material contained in its alphabet once it is allocated content does not mean

there is no semiotic material. It may mean that in the computer there is no

semiosis. But this is not required. To ask anything different would be similar to

requiring a book to be able to comprehend itself for the book to have

meaning. The connection between the [human] reader’s reading of the code

and changes in the code structure of the machine is demonstrated by the fact

 101

that semiotic events in the reader have code consequences for the computer,

as code events are triggered by the reader’s use of the machine. Of course,

as observed above, it is not possible for the reader-user to experience these

formalisms talked of above.

NB I have written, “reading reads writing”. I did not say, “it understands it”61).

4. Programs and Performances

The text machine as I have described might be said to be “computational”: it

moves linear sequences of symbols linearly. It does not take great account of

variation of the text in its other dimensions. This is partly because I am not

writing a thesis about visual poetry. It is also because the text machine has

been defined as not material-specific: it can itself be instantiated in various

materials, and its inputs can be written similarly. Therefore, although it uses

materials, it is independent of them.

This is reminiscent of Ferdinand de Saussure’s62 formulation of the

immateriality of language generally. This is an immateriality that employs the

material without ever depending upon that material. This is because language

is a system of values not things.

Similarly, the text machine, in other words, is a process not a thing; and it is a

process that will accept various inputs and produce various outputs (in this

thesis texts, but also images and sound). Nor is it bound to a particular

historical moment by definition. The process can be set in action at different

61

 See John R. Searle’s (1980, not uncontroversial) ‘Chinese Room experiment’ for a
discussion of how a machine – or a human – may process symbols without understanding
them.

62

 “… it is impossible that sound, as a material element should in itself be part of the
language. Sound is merely ancillary, a material the language uses. All conventional values
have the characteristic of being distinct from the tangible element which serves as their
vehicle. It is not the metal in a coin which determines its value...” (Saussure, 1983, pp. ll6-
117).

 102

times and places. But to run, it must have an input and must run at a specific

time. This will be the event of its performance. This event has its time and

materials. These aspects of the machine’s work are a project this thesis does

not undertake.

Performances by technical machines and humans are not identical.

Mechanical tasks are often performed quicker by machine. This is frequently

the reason for their creation and the prompting, for instance, behind Vannevar

Bush’s dream of the personal computer. Moreover, it is the fact that textual

manipulations can be formed into rule-based instructions that allows for their

mechanisation63. But a human may take a long time, perhaps an impractically

long time, to carry out similar actions. (This can be incorporated into a

performance, however, such as the reading of On Kawara's 1 Million Years at

Trafalgar Square, London 2004).

It is possible to imagine a human performing the recursive steps of something

like the Postmodernism Generator – fetching words and following sentence

structures according to a randomised process, but it would take a long time to

make a text. And why bother if this can be done with little cost, at the click of a

mouse? Surely it is only to make the theoretical point. Or perhaps when one is

constructing such a series of instructions and is deciding the actions the

program is to perform. Then there is the experience of working out specimen

steps of a machine. Once it is done, there is little cause to follow these steps

further. If the machine works, it works. This is why many text manipulations

are transferred to computer, but not the other way around (programs turned

into human action, even where it can be done).

An example of program ‘downloaded’ to three dimensions: the performances

of ‘dotwalk’ by ‘socialfiction.org’.

This is one of their performance scripts/programs:

63

 “Whenever logical processes of thought are employed - that is, whenever thought for a time
runs along an accepted groove - there is an opportunity for the machine.” (Bush, As We May
Think, 1945. No page numbering).

 103

// Classic.walk

Repeat

{

1 st street left

2 nd street right

2 nd street left

} 64

http://socialfiction.org/dotwalk/dummies.html

Nevertheless, there are few instances of a person taking the steps that may

be performed by a computer program. This would mean, in effect, a lot of

trouble to go slower. (I once considered turning Every Icon by J F Simon Jnr

into a performance piece. Every icon moves squares on a 32 x 32 square

grid. But the time involved was prohibitively great65). It is because of such

differences that the different material instances of a machine are not wholly

identical.

The physical conditions of the text machine's operation and display in many

ways are effects of the specifications of other machines, other non-text

64

 “Algorithms are by no way limited to computer software, and computer (sic) - as devices
which execute algorithms - are by no way limited to chip-based electronic hardware. La Monte
Young's "Draw a straight line and follow it" is a plastic example of an algorithm which can be
executed by any kind of being or hardware which thus acts as a "computer" executing the
algorithm. ".walk" by socialfiction.org is based on this very concept of a, quote, "non-electric
computer". Computations are executed not through electricity flowing through the transistor
gates of a processor chip, but by walks through urban spaces”. Cramer,
http://www.runme.org/feature/read/+dot-walk/+31/

65

 “The grid contains all possible images. Any change in the starting conditions, such as the
size of the grid or the color of the element, determines an entirely different set of possible
images. When Every Icon begins, the image changes rapidly. Yet the progression of the
elements across the grid seems to take longer and longer. How long until recognizable
images appear? Try several hundred trillion years. The total number of black and white icons
in a 32 X 32 grid is: 1.8 X 10

308
(a billion is 10

9
).

Though, for example, at a rate of 100 icons per second (on a typical desktop computer), it will
take only 1.36 years to display all variations of the first line of the grid, the second line takes
an exponentially longer 5.85 billion years to complete.“
http://www.numeral.com/articles/paraicon/paraicon.html.

http://socialfiction.org/dotwalk/dummies.html
http://www.runme.org/feature/read/+dot-walk/+31/
http://www.numeral.com/articles/paraicon/paraicon.html

 104

(technical) machines. The results of these combinations are multitudinous and

not possible to prescribe, if only because we cannot foresee the course of

technical development. Add to this the fact that we do not know the

environment in which a machine-ensemble will be arranged, and we find we

may know little in advance of its emergent possibilities.

A further issue is that we cannot predict how a situation will be

read/perceived. It is not possible, following developments in cybernetic theory

that date back to the middle of last century, to leave such questions out of

account. Systems cannot be defined independent of the observer (system).

According to second order cybernetics, systems interact and change in

interaction.

Imagining a “literature machine”, Italo Calvino in 1967, writing during the

period of second order cybernetics, phrases a similar idea eloquently,

“Once we have dismantled and reassembled the process of literary
composition, the decisive moment of literary life will be that of reading. In this
sense, even though entrusted to machines literature will continue to be a
“place” of privilege within human consciousness…The work will continue to be
born, to be judged, to be destroyed or constantly renewed in contact with the
eye of the reader” (1997, pp. 15-16).

It is not possible to define a text machine independently, as a fixed and stable

set of rules and operations. This is true if only because different versions

might be imaginable, but each with a claim to authenticity.

Having said this, I am not adopting a purely sceptical position. I have said that

the text machine cannot be defined as a stable entity distinct from the

observer's perception, not that it cannot be defined at all.

There is also the question of social context to consider. The text machine may

be remade in its narrow functioning, but not in all the earlier circumstances of

its making. A rough illustration: it is possible to use the program of Racter (it

will be remembered, the program that ‘wrote’ The Policeman's beard is half-

constructed) to make Racter-like texts (there are versions of the program

 105

available on the web), but it is not possible again to claim, as does its preface,

to be the computer's first book.

That a text machine may be made, that it is possible to specify its rules,

instructions, codes and inscriptions, this for me is not the main problem. There

is however the question of what is not included in a text machine's

formulation. This, we are beginning to see, may be quite a lot.

This may be conceived as a confrontation between what may be coded and

what may not be encoded. It may be posed as the relation of pattern to

presence, in terms of Hayles’s discussion of the posthuman and its debt to

information theory.

This approach to text, the text treated as pattern not substance, is in fact

inscribed in the first moments of information theory, in Shannon’s (1948)

Mathematical Theory of Communication. Shannon described a system for the

efficient coding and transmissions of information. Shannon describes (more

than a decade before the – 1960 – formation of the Oulipo, committed to the

application of mathematical inspired procedure to literature) several methods

of generating text according to stochastic procedures. These procedures are

based on statistical analysis of word frequencies. Furthermore, they do not

necessarily involve a computer, but can be performed with a text and a pen

and paper66 (see Appendix 4. This text appears on my web site at:

http://www.in-vacua.com/markov_text.html).67

Nevertheless, whatever is a pattern of symbols should be possible to turn into

computer code; and what is in a computer code may be performed by

66

 In any case, barely available in 1948. In 1950 Shannon’s disciple J.R. Pierce (see Pierce,
1971, and Pierce, 1980) also made texts using similar methods. Again, these were not
computerised. They betray a distinctly “poetic” touch, whatever the apparently mechanical
methods of their devising. The phrase “electrons diffuse in vacua”, which is quoted on the
entry page of my web site, www.in-vacua.com, comes from this source (see Pierce, 1971, pp.
51-52). See “Appendix: Evidence of Work 4” for a longer comment on Shannon.

67

 Hodges, S. (2004) makes similar points. Writing of the same texts he says, “Shannon’s
technique for creating these approximations would not seem out of place in a book of Oulipian
experiments” (p. 34). His thesis has a more extensive analysis of connections between the
Oulipo and information theory then I undertake.

http://www.in-vacua.com/markov_text.html
http://www.in-vacua.com/

 106

computer if it is formed into a satisfactory program. What we have in Shannon

is essentially the ordering of one “linguistic articulation system” (Finnemann,

1999, p. 296) – that is, the text – by another, an algorithm. An algorithm is not

exclusive to the computer. However, computers run them faster than humans.

But to do this, the algorithm and the data it treats must be translated into its

own code terms. How does this work?

Finnemann makes a distinction between these two types of system: “Where a

sentence, however, produces a meaning”, he says, “the algorithmic procedure

produces the transformation of one expression to another” (ibid. p. 300). Thus

the former is to do with the creation of meaning, and the other (the algorithmic

procedure) the rule-structured processing of a set of values into another set of

values. What Finnemann does not say explicitly is: It is possible to produce a

sentence from an algorithm.

That is to say, one regime may determine or produce another. The non-

referential may produce the referential. And, once produced such a sentence

may be indistinguishable from any other (as above, with the Markov

algorithm’s68 ‘Google’ sentence).

However, determination is not all in one direction. As Finnemann argues, the

semantic regime determines what algorithmic regime we choose and what

terms are fed into it: whether we choose to multiply the Eiffel tower by the

sound of a thunderclap, as in Finnemann’s example, is not determined by the

algorithm (which can receive many different values) itself. The input value is

motivated from outside it. (However, the inputs may not originate with a

human user; one machine may feed data to another machine).

68

 It’s a real algorithm: from Brian W. Kernighan and Rob Pike’s (1999) 'The Practice of
Programming.

 107

The two levels are mutually determining. However, if we subject a text to an

algorithmic process (which is the loss of referential meaning69), we have the

strange event of something without reference producing something that has it.

So we see that the complex and mutually determining semantic and

algorithmic levels depend on the transposition of semantic material. This may

be processed by computer in code form, translated back, and consumed

again at a semantic (interpretive) level.

5. Conclusion

In this Chapter I have sought to develop an understanding of the importance

of code elements in the making of a machine: that is, a text machine. These

code elements become significant when another performs that machine: a

digital computer. This machine uses a neutral code in which to code semiotic

materials. However, it transpired, this neutrality was only technical. The

transposing of semiotic material to code elements was found to have a

number of important implications. However, much of the material and social

aspects of the machine’s functioning and construction cannot be coded in the

same way. In short, these were found to not be programmable for computer.

Things are lost when a text machine is given over to a technical machine to

perform. What else happens? What is gained? Speed (already mentioned)

and size (scope) are gained. However, because the code and algorithm may

produce a text, a sentence, who or whatever writes the code writes the words.

The reader is disadvantaged here in circumstances where that reader has no

writer’s privileges.

69

 “…the elimination of the expression’s referent” (ibid. p. 296, italics in the original), because
an algorithm can take more or less any permissible value.

 108

…get it out of your head and into the machines
 William S. Burroughs

Chapter 6: A Typology of Text Machines

Introduction

Rather than present what could easily degenerate into a thematically and

chronologically muddled survey of three years’ work, I will try to organise my

text machines according to a working typology.

1. Substitution Machine
2. Manipulation Machine
3. Generative Machine
4. Other

These four categories, I will explain, exist only ideally, in the sense that

machines may not sit conveniently within one or other of them, but may have

aspects of more than one category. There are also, it will be shown, several

sub categories; so for instance, there are at least two dominant methods of

text generation.

Nevertheless, I think that the typology is a useful way of organising what

might easily seem a confusing sprawl of material.

Each system is capable of producing widely different genres of text. This point

is important to my discussion. Text machines do not fit neatly and

 109

conveniently into one genre alone: a technique for producing poetry may be

reassigned to write prose also; the genre of prose, too, is a matter of

preference.

Text machines that use a particular system are not necessarily poetry

machines, art machines, novel machines, nor indeed, necessarily producers

of corporate home pages and love letters, to cite examples Murray (op. cit).

mentions. They may do these things, or any number of others.

The conclusion that must be drawn from this is that we cannot define a poetry

machine or art machine on the basis of its text techniques alone. It is the uses

to which these techniques are put that are relevant. If a machine is used for

poetry, then it is a poetry machine: if it is used for greetings cards, then that is

what it is, whatever the sophistications of any of its possible programming.

My typology of text machines is distinguished from typologies of texts. As I

have remarked, there is generally more interest afforded the texts than the

machines in the existing scholarship. (Aarseth, op. cit. p. 71, has a graph of

paper and electronic texts that plots their ‘cybernicity’ according to a set of

defined criteria). But apart from a few antecedent partial accounts that I have

drawn upon (not least Murray’s, below) there is no attempt to categorise text

machines. To my knowledge, the organising schema I use here to discuss

text machines is original to this thesis.

Because of everything I have said about the difficulty of working from text to

machine or machine to text, for that matter, the application of my categories

must be tentative. Where I am describing my own work, I am in a special

position: I know the text and I know what made it. But the typology’s use

elsewhere must be qualified. How can we know the machine if we only know

the text (as discussed in Chapter 4)? In practice, often we do know more than

this; and where we do, the categories I advance may be useful.

 110

1. Substitution Machine

Description of Machine

Murray (1997), in her discussion of computerised narrative, refers to what she

calls a “substitution system” derived from Lord’s work70 on folk literature.

Murray observes “[e]arly attempts at computer-based literature tried to use

similar methods of simple substitution” (p. 189). For her, a substitution system

provides what computer programmers call the “primitives”, the smallest

elements, from which greater operations may be built. For Murray, phrases

and sentences of such a system are the “morphemes” that must be built up

into more complex entities that go together to make the larger units that may

eventually make a narrative.

Murray notes a substitution system is not specific to computerised literature

alone. This might seem to suggest that such a system may meet the demand

of being operable across all three (limited function, simulated and abstract)

formations of the text machine that were discussed in Chapter 2; that is, it is

not medium-specific. I think this is persuasive; but it is not the only trans-

media system.

Description of Work

My early work largely – but not entirely – fell within this group of Substitution

Machines. I will list these works by title.

1. Programmer (2003)

2. Computerized Haiku (2003-2004)

70

 From Alfred Lord’s book The Singer of Tales. A substitution system may be thought of as a
stock of formulas into which may be substituted chosen elements. Lord discovered poets in
the oral tradition used these formulas as an aid to composition.

 111

3. Sentences (2003)

4. High-Entropy Essays (2005)

5. Ono Generator (2004)

Programmer (see illustration) produced baffling statements. These appeared

in what are called ‘alert buttons’. It used two codes: it was programmed in Perl

and the Perl program wrote the JavaScript event handler that produced the

frustrating button that had to be “Okayed”. It selected text on a randomised

basis and dropped it into sentence templates.

It was my realisation that one code and program could write another one

(effectively include the other within it) that prompted some of my reflections on

code, particularly that codes could write other codes and that machines could

exist within machines.

Programmer, unfortunately, was not very interesting to use and has been

removed from public display.

Plate 9

 112

Computerized Haiku http://www.in-vacua.com/cgi-bin/haiku.pl was a

breakthrough for me. It was in fact a reprogramming of a piece of work that

was exhibited by Margaret Masterman and Robin McKinnon Wood at the ICA

gallery London, 1968. It is the subject the article and presentation that is

Appendix 1.

The work was important to me as it showed, not only to others but also to me,

that one might remake – or reverse-engineer – a work of art from a

description of it: the original program is lost but there is an essay (Masterman,

1971) about it.

This was, I believe, my first piece to be displayed on the web. The work also

now includes randomised and automated versions.

There is an archive of user haiku that is growing slowly. This archive was an

attempt to replicate the public display at the original ICA show. Behind this

also was a reaction to the failure of Keith Tyson’s online/offline work

Replicator (for lack of users). My conclusion was that, unlike Replicator, user

participation should be entirely from the screen-keyboard and more or less

immediate.

Sentences http://www.in-vacua.com/sentences.html. ‘Sentences’ was based

on a similar template structure to that of Computerized Haiku. It consists of a

fixed template structure and lists of words. The user may select from the lists

or run a random version that chooses for you: a Substitution Machine can

write prose or poetry.

The structure of Sentences was derived loosely from Lawrence Weiner’s And

Yoko Ono’s works: It had an injunction “an x to be y” (very much Ono) but

also a past participle (the preferred mode of Weiner). Most of its vocabulary,

however, was freely invented.

http://www.in-vacua.com/cgi-bin/haiku.pl
http://www.in-vacua.com/sentences.html

 113

High-Entropy Essays http://www.in-vacua.com/cgi-bin/mendoza.pl. ‘High-

Entropy Essays’ was originally shown in Cybernetic Serendipity. Professor E.

Mendoza programmed it around 1960. It has always fascinated me – much

neglected in the literature, but ahead of its time: it anticipates the far more

famous Postmodernism Generator. I have used a flowchart published by

Mendoza to make my version. However, my program writes essays that differ

from Mendoza’s. His too cannot be derived exactly from the chart. So I

assume that some of the work is lost for good. It is for me an interesting case

study of a partially successful (because of omissions in the records) attempt

to reverse-engineer a lost work from instructions after the event.

Ono Generator http://www.in-vacua.com/cgi-bin/ono1.pl. This takes

selections of text from Yoko Ono’s (1995) Instruction Paintings and on a

controlled randomised basis drops them into sentence templates shuffles the

resulting lines, and selects randomly a number of these from one of two

groups. I found parts of the Perl code in an obscure exchange on a

programming list: the code that selects on a random basis between one and

four lines of text to display.

Ono Generator gives the impression of being more sophisticated than it really

is by a series of randomised choices that vary the number, choice and

vocabulary of lines, and its use of a restricted vocabulary. Because of this, it

appears to largely confine itself to one subject. This technique of hiding the

text selection by adding random choices is in fact a fairly well visited one. It is

probably what gives Racter its air of relative consistency (see John Barger’s,

The Policeman’s Beard was Largely Prefab!).

http://www.in-vacua.com/cgi-bin/mendoza.pl
http://www.in-vacua.com/cgi-bin/ono1.pl

 114

2. Manipulation Machine

Description of Machine

I am not the first to make the distinction between text manipulation and text

generation and other text processes: Hartman (1996) writes of that “other

main approach to ‘computer poetry’: not generation but text manipulation” (p.

95).

Manipulation Machines, as I remarked above, subject a text input to some sort

of process. There are many processes. The cut-up of Tristan Tzara, for

example, comprises the instruction to cut-up a newspaper and to select the

words at random. Many of the techniques of the Oulipo authors also constitute

Manipulation Machines. The Oulipo were dedicated to applying expressly

algorithmic procedures to texts. A well-known example is N +7, where a text is

selected and for each noun another, seven away in a dictionary, is selected

(“N” stands for noun). This produces some strange, sometimes striking,

effects.

Combinatorial poetry, with its permutation of prepared texts, I also include in

this category (my, tzara combinations is an example of a combinatorial

approach). I suggest that the reader visit Cramer’s Permutations71 website for

an extensive treatment of the subject.

It is not possible to list all of the techniques. Many have been transcribed for

computer and may often be found on the Internet. Diatext began as a non-

computer procedure, invented by one person, the poet Jackson Mac Low and

was programmed by another, Hartman, for computer. Hartman remarks,

“Jackson had done all the work by hand. I sat down and embodied his rules in

a little program” (op. cit.). It is now available in several versions.

71

 http://userpage.fu-berlin.de/~cantsin/permutations/index.cgi

http://userpage.fu-berlin.de/~cantsin/permutations/index.cgi

 115

Any text manipulation procedure, so long as it can be embodied in a clear

procedure, I hazard to state, should be possible to program for computer in a

comparable way. There is no requirement it should be programmed (this

would be required only where the machine in question is devised and made

purely as a computerised machine for processing electronic texts alone: such

works cannot in practice function outside of a computerised and networked

environment) and it does not to be the person who developed the rules to be

the one who programs the work.

Description of Work

There is (it will be observed) a wide variety of work in this group. Manipulation

of a text may take many forms.

1. Hypograms (2003)

2. Nike Splice (2004)

3. tzara Combinations (2004)

4. Noumena (2003-2004)

5. Alt_Img_Tate (2005)

6. Monochromes (2005)

7. Passwords (2004-2005)

Hypograms (not currently available on the web: see illustration) was in some

ways a simple piece of work. I hesitate to call it programming. But in its

theorisation it was more ostentatious. A hypogram is a word dispersed

amongst other words in little groups of letters and is an idea that comes from

Saussure (and is explained in Starobinski, 1979).

I used Google’s search engine to look for these words on the web. When it

found them it highlighted the search terms (see illustration) forming a word.

 116

Plate 10

I consider the highlighting to be a sort of text manipulation.

Nike Splice is no longer running on the web. It took an input text entered by

the user and a text from Nike’s website and simply shuffled the words

together.

The raison d’etre of the piece was a reference to William Burroughs who used

similar text cut-up techniques (Burroughs also did an advert for the Nike

company).

This piece used an algorithm – the “Shuffle” – to mix-up the text. The Fisher-

Yates Shuffle72 is a well-known algorithm, available in many computer

languages and used widely whenever some randomness is required. I have

used this shuffle in several other works to different ends (tzara combinations,

Ono Generator, Markov Generator) and therefore it is worth describing here. It

also throws light on my work process.

72

 See footnote 35, above.

 117

I began with a wish to shuffle a text. (This is a different requirement to making

a random selection, something I will also describe). When I hit a programming

problem, my usual approach is to begin by ‘Googling’ search terms that relate

to that problem.

After many attempts I first found the algorithm. Then I had to find a version in

Perl. Like much of the code you may find in books, on the Internet, or in some

other way (kindly programmers?) the version of the shuffle I found in January

2004 was not useable in the form it was in. I had to write the surrounding

code to enable it to print as a block of text, rather than a list of words, and

write all the ‘CGI’ (Common Gateway Interface, what makes code run on the

Internet and allows programs to take user input).

With this accomplished, I had a code block that I could adapt to shuffle words

as well as lines.

tzara combinations http://www.in-vacua.com/tzara.shtml.

This was my next use of the Fisher-Yates Shuffle. It takes Tzara’s instructions

for producing Dadaist poetry by cutting up a newspaper and shuffles this

instruction itself. It shuffles lines not words. It was my hope to do something

more sharply focussed than to cut-up online newspaper sources (there are

several of these programs on the web).

It treats Tzara’s text as the basis of a combinatorial poem, as if the order in

which the lines appear is not important.

http://www.in-vacua.com/tzara.shtml

 118

Noumena http://www.in-vacua.com/noumena.html is a complex piece.

a. What does it do? It deletes a web text leaving the punctuation.

b. How? It obtains a web page and processes it.

c. Why? It is a software version of Reality by Jarowslaw Kozlowski.

(There is information about Noumena at http://www.in-

vacua.com/noumena_text.html. There is also a discussion in the Appendix to

Chapter 2 of this thesis).

This was the first work I tried to program. At that time, I was not a programmer

at all. I’d never previously attempted to program a computer. I decided Perl

was to be my computer language at this time because of its strength in

processing text. Using programming books and discussion lists where

beginners help each other, I got to the stage of being able to take a plain text

file and perform the selective deletion required. However, when I tried to do

the same to a web page I found that Perl also processed the HTML formatting

destroying the page’s appearance: not the effect I wanted.

I had been in contact with a group called London Perl Mongers. This is a

group largely of professional programmers. Many are extremely able in their

field. Also they are helpful to beginners and may offer assistance to the

novice.

As a consequence I was able to share my code sketch with Simon at

www.hitherto.net. Instead of the few tips I had hoped for, he basically wrote all

the code from scratch and posted it up in useable form on his website for a

time.

I now understand what the code does and have even edited the program

slightly to do more of what I require. However, the real credit goes to him for

the programming. It uses several Perl modules (Modules: programs other

programs use) that process HTML pages.

http://www.in-vacua.com/noumena.html
http://www.in-vacua.com/noumena_text.html
http://www.in-vacua.com/noumena_text.html
http://www.hitherto.net/

 119

Noumena is curated by runme.org, the ‘software art’ organisation, at:

http://www.runme.org/project/+noumena/.

Art-Strike (Presently not available on the web. See Plate 11 below).

Art-Strike is similar to Noumena in conception and in its programming. It too is

based on a bookwork, on this occasion Five Bookpages by Matthew Higgs.

Higgs carefully struck through pages of popular fiction except sentences that

referred to art.

Art-Strike is in two forms. One looks in online art sites for the letters ‘art’ and

bolds and underlines them. It crosses out everything else. The second

program takes a user entered URL and a string of characters and looks for

them in the chosen web page, if found, it underlines, bolds and crosses out

the rest.

It is the same in its programming as Noumena except the part that looks for

patterns in web pages and alters the pages.

The way it does this is a little bit complicated. The program treats text and

Html separately. It inserts tags to turn on the strike through function into the

text: <s>. If it encounters a match with the term that was entered it turns off

the strike-through, <\s>, and then turns it back on. When the user’s browser

displays the text, it looks like Html so it treats it like that, producing the

selective crossings out.

http://www.runme.org/project/+noumena/

 120

Plate 11

It is slightly too unreliable and is awaiting more work.

…

Alt_Img_Tate http://www.in-vacua.com/Alt_Tate.html

Monochromes http://www.in-vacua.com/monochromes.html

These works have similarities that allow me to discuss them together. They

each look through a list of web addresses. They look for HTML coding, find it

and use the information obtained in their display.

To create a list of addresses I used some free software, Xenu Link Sleuth

(http://home.snafu.de/tilman/xenulink.html). Starting with an address, Xenu

compiles a list of links.

This list is stored in a file. The program looks through the list, selects an

address at random, opens the web page at that address, and looks through

the page.

http://www.in-vacua.com/Alt_Tate.html
http://www.in-vacua.com/monochromes.html
http://home.snafu.de/tilman/xenulink.html

 121

At this point the two programs differ. Alt_Img_Tate looks for “alt” tags. These

contain the text the user sees if graphics on the browser are turned off or

graphics fail to load.

Again, a random choice of alt tags is made and this is displayed. Some more

code (JavaScript) takes care of reloading the page (it is automated) and

fading in the text. This code was found in separate blocks on the Internet and

pieced together. The fade in function alludes to the Tate Gallery’s own style of

graphics, with its fade effects.

Alt_Img_Tate also uses part of HtmlImgAltTextExtract.pl by Andrew Hardwick,

http://duramecho.com, released under GNU Public Licence. Once again, I

adapted parts of this program to produce the texts, as I required them.

The work was selected for inclusion in FILE 2005, Electronic Language

Festival, Sao Paulo, Brazil (http://www.file.org.br/works_list_todos.php?sel

=4.0&lang=en&works_category_display=1.2.6&ano=2005&range=N-Z).

Monochromes differs in that it has no fade in and does not extract alt tags.

Instead it looks in a page for several other things: color (sic) tags, the web

page title, and the web address. It uses a “pattern match” (programming term:

‘something that looks like x’) to get the address and colours, and a module –

‘HTML::Tree’, another Perl module, to get the web page. It repeats the

process, with a new presentation every few seconds.

These two works essentially select and display text, parsing the HTML and

using parts of it to make the display on screen.

Passwords http://www.in-vacua.com/. This has existed in two versions.

Originally the headlines it displayed were databased; that is, kept in a file that

had to be manually updated.

http://duramecho.com/
http://www.in-vacua.com/

 122

This was burdensome, and antiquated headlines tended to mar the effect. To

get the program to go out and find headlines was one of the hardest

programming tasks I have faced. All online news services have pages

formatted in different ways. The program has to be tailored to the page.

Finally, I found some programming code that took headlines from

www.MaximumEdge.com (an online news service). This I adapted to only

grab the text of the headlines, choose one at random, and display it.

The user has to copy and send the text using a web form. The program

compares this text with the one it has. If you get it right, it lets you in.

This program, like several others uses Perl’s built-in random number function.

It is possible to, for instance, number a list and ask Perl to choose one

number at random: it will then show the text associated with the number in the

list.

3. Generative Machine

Description of Machine

There are several main approaches: Recursive Transition Networks (RTNs)

and Markov processes are the two I use. There is also Natural Language

Generation. This is an important area in applied computer science and

Artificial Intelligence, something that is outside the scope of my research.

There are other methods, including hybrids of several techniques. These are

the subjects of computer science research. I will concentrate on the two I am

familiar with. Markov generators are probabilistic. There is an input text, a

calculation of word sequences, and an output text. RTNs start at the other

end, with a grammar. A grammar is a set of rules for the production of all

http://www.maximumedge.com/

 123

possible sentences for that grammar. The grammar is run and a text

produced.

These are very different approaches. They are also complicated to describe.

There are several texts in the bibliography for those interested in RTNs. For

instance, Uneson, Hoftstadter and Bulhak.

There is an essay displayed on my web site that describes Markov processes

and the general form of Markov Generator and Webov. It is at http://www.in-

vacua.com/markov_text.html. It is Appendix 4 of this thesis.

I will confine myself here to a discussion of the work.

Description of Work

1. Markov Generator (2004)

2. Virtual Dictionary (2005)

3. Webov (2005)

Markov Generator http://www.in-vacua.com/markov_gen.html and Webov

http://www.in-vacua.com/webov.html follow a now familiar pattern of my

becoming interested in a problem and then seeking to find out how it could be

investigated. For each of these works I use an algorithm by Kernighan and

Pike (1999). This I have slightly adapted to print as a block of text not as a list

of words. I suggest the reader consult the essay that is Appendix 4 as this

contains many of my reflections on Markov chains.

Markov Generator takes part of the present thesis as an input text and

generates a text from it. The page reloads with a new text after a randomly

chosen number of second (arbitrarily set at no more than 60 seconds).

http://www.in-vacua.com/markov_text.html
http://www.in-vacua.com/markov_text.html
http://www.in-vacua.com/markov_gen.html
http://www.in-vacua.com/webov.html

 124

Webov. From a programming point of view Webov is a little more

sophisticated. It allows the user to enter a web address. Webov then gets the

web page at this address and processes only the text found there with the

Markov algorithm and returns the result to the user.

There is (see Appendix 5) a body of text attached to this thesis that has been

generated using the text of this thesis and the algorithm.

Virtual Dictionary http://www.in-vacua.com/home.html. I can take little credit

for programming this piece. The program and the obscurity surrounding its

author are discussed in Chapter 4.

What I have done is to write a series of grammar files that the program uses

to generate texts on different key words to this thesis.

What I did was to take a Perl program included in the distribution of

‘Parse::RecDescent’ called demo_textgen.pl. This program is similar to

demo_randomsentence.pl but a little more complex. There are two other not

dissimilar programs by Schwartz 73. My conclusion was I was unable to

improve on their programming. What I did was to use some of the structure of

the Schwartz grammar and adapt it for use with demo_textgen.pl (it needed

some work).

This enables me to write fairly short grammar files and run them. More

complex text generation requires a concert of programming like Bulhak’s

programming of the Postmodernism Generator.

A part of a grammar file looks like this:

statement : statement | statement2;

73

 Creating an Inline Language by Randal L. Schwartz (2004) http://www.linux-
mag.com/2004-03/perl_01.html and Writing Randomly by Schwartz (1999)
http://www.stonehenge.com/merlyn/LinuxMag/col04.html

http://www.in-vacua.com/home.html
http://www.linux-mag.com/2004-03/perl_01.html
http://www.linux-mag.com/2004-03/perl_01.html
http://www.stonehenge.com/merlyn/LinuxMag/col04.html

 125

statement2 : remark_start " or the " adjective " " noun because;

remark_start: 2 @ (2 @ " 'Instruction'" | 2 @ " The instruction") "

is not " verb2 " the " noun2 |

 "The Instruction is the " job " that is the " verb " of the

text machine";

The program basically runs through this file recursively (it may make several

runs through the structure) to generate the text.

As I noted in Chapter 4, writing by Virtual Dictionary is now beginning to be

included in online resources. It is hard to gauge if compilers of these

resources are aware that the texts they include are machine made.

4. Other

I feel obliged to include this vague category because there is work that does

not fit into any of the above.

Description of Work

1. src

(Included in the Rencontre Festival Paris 2005: http://www.art-

action.org/site/en/prog/05/paris/prog_expo_03.htm).

src http://www.in-vacua.com/src1.html. It takes a search word from the user,

finds a match if possible in an image databank and displays this image in tiled

form on screen. It also uses JavaScript to scroll down the page and to renew

the process automatically. Finally, it also displays a portion of the source code

of the images superimposed over the images.

http://www.art-action.org/site/en/prog/05/paris/prog_expo_03.htm
http://www.art-action.org/site/en/prog/05/paris/prog_expo_03.htm
http://www.in-vacua.com/src1.html

 126

The use of a form to take a user entered value is a basic of CGI (common

gateway interface): an elementary text machine. The display of image and

code is a sophistication. The use of www.picsearch and its web tools to

search a database comprises one machine using another machine: a

common occurrence on the web.

With this work, in its substantial use of images, we are moving from pure text

machines into new areas.

…

This is but an example. In practice many machines are not pure, but are

combinations of machines or several machines linked together. I deal with this

issue in the thesis.

http://www.picsearch/

 127

 …to keep everyone
deleting, substituting, inserting

Spencer Selby

Conclusion: Ouroboros74

The theory of a text machine is itself a text machine: it is a machine for the

production of text machines, a meta-instruction for the production of

instructions. This thesis is that machine. I say “a”, not “the” meta-instruction,

because it is impossible for one instruction to produce all instructions, if only

because it could not produce itself (a point I made at the start of the thesis).

A thesis that seriously claims the status of an instruction may be considered

machinic. It is machinic, to use Deleuze and Guattari’s (2003) word:

something that brings together heterogeneities75. Synthesising is certainly

something this thesis can claim to have achieved. How this is valued is

another matter perhaps. It is unusual to find the word ‘machinic’ employed as

a compliment. So Alan Sondheim can say that he is “increasingly finding

theory impoverished / machinic “76. Machinic in this usage means something

like ‘mechanical’ in its more derogatory sense. But this is not correct at all. In

the passage mentioned, it is by no means clear that Deleuze and Guattari use

74

 “The name ouroboros (or, in Latinized form, uroborus) is Greek and means ‘tail-devourer’”
http://en.wikipedia.org/wiki/Ouroboros.

75

 “What we term machinic is precisely this synthesis of heterogeneities as such" (p. 330).

76

 Alan Sondheim in a recent review posted on the Nettime list (11
th
 August 2005, Reviews of

some recent books and then some -).

http://en.wikipedia.org/wiki/Ouroboros

 128

the term negatively77. This thesis is an instruction of instructions, a machine of

machines, and proud to be so.

“Always Follow the Instructions…” proposes a text machine as a way of

conceiving of the bringing together of instructions, rules, codes, and texts as

working entity. It itself, of course, draws these elements together in the

process of its discussion. In that regard, it reflects upon itself.

In Chapter 1 this synthesising capacity was suggested by the diversity of the

contexts visited by this thesis. In Chapter 2, I distinguished the text machine

from other machines. Chapter 3 was concerned with rules and instructions,

while Chapter 4 was given over to the texts the machine may write. The fifth

Chapter, about code was perhaps the most complex: the relation of the text to

code is complex. Chapter 6 delineates a typology of text machines. This

typology suggests how to approach an understanding of this complex subject.

These elements combined amount to an advance in theory: before this thesis

there were phrases (literary/writing/language machines etc), but no working

theory of the text machine. However, novelty is not its only or most significant

claim. Weightier is the claim to theoretical superiority. This claim to

superiority is based upon the usefulness of the hypothesis of a machine. The

notion of a machine should enable us to understand better. Specifically, it

helps us conceive of a machine as a recognisable entity, distinguishable from

code language, text output, algorithms and hardware. All of these were found

to be replaceable. The text machine is what is left when all these are

subtracted: primarily the structure of its rules and instructions. These

structures form the basis of the typology (above) that I put forward as a

contribution to knowledge in this area.

We need to understand the text machine if we are to understand the world we

live in. It is not unusual to encounter such machines. I proposed in Chapter 4

that in fact the relatively marginal status of text machines (both on and offline)

77 They use it to describe the formation, from a series of notes, characteristic bird songs.

 129

in art and literature obscured the reality that in everyday life these machines

are in motion. They seem to be – by and large – diligent robots, gatekeepers

and passport checkers, traffic controllers, and the like, ordering our

experience in space and time. However, they may seem to desire to promote

their own importance, to subject us to their disciplinary regime, as many of us

will be convinced after an encounter.

If it is the computerisation of text machines that has accelerated their

development, it is program and code, a level inaccessible to users, that

transforms these machines into effective means of social, financial and other

regulation. The invisible determines the visible. The inaccessible determines

the accessible. Those who write the machine write the rules. Those who don’t

have little option other than to follow them, or to exit. This is a relatively

harmless business when it comes to art. Month by month78 my web statistics

tell me that the number one exit page for my website is the ‘index’ page with

its password dialogue: a strong if anecdotal indication that many will avoid

such interactions without coercion or greater inducements. However, the

situation may be altogether more serious outside of such innocent

simulations.

 Plate 12

78

 25.68% in July 2005.

 130

Other text machines are protected by copyright and law and secret

encryption: they may write to you, they may desire to rewrite what you have

written, but you may not rewrite them. It is their code that affords them the

status of law.

It is the coexistence of two levels in the computer – the legible text and the

unseen program – that transforms the text machine from its origins as artwork

to organising social principal. Considering literary production, of course it was

always possible for writers to hold back about the mechanics behind the

making of a text79. But computerisation can ensure this withdrawal.

The claim to theoretical superiority must be that the theory of the text machine

as described may form the basis of comprehending this significant

phenomenon. That is to claim that when you encounter a situation in which

one of these machines writes, it will be possible to understand the sort of

machine it is, what it seems to be doing and how equal or unequal our

position is in relation to it. This thesis makes this possible.

This thesis also enables the comprehension of works of art and their relation

to non-works4 of art in the mundane world that have similarities to them. This

thesis, having replied to the question it set itself (“what is the impact of the

computer on the text machine?”) has, improved the understanding of these

works, but also of any artwork that shares its conditions.

79

 See Raymond Roussel (1995), How I Wrote Certain Of My Books, where he explains some
compositional strategies.

 131

Ah! machinist, take great care of me
Aristophanes

Future Research

I have noted, what critical commentary there is on text machines does not

really engage with the machine as compared with the text. Where there is a

little attention paid, there is a strong orientation to hypertext and computer

poetry, perhaps because these genres are relatively well established. Artwork

that does not stick conveniently to pre-established forms seems to get less

contemplation. In either case, the machine itself is scantly considered. I think

this is a serious omission and one that requires correction

Two research projects open out from this. One is historical, and the

beginnings of which appear for instance in Appendix 1. Much work is still to be

done in this area. Very little serious historical work exists at present. The

situation is all the more pressing as many of those who worked on early

computerised text have, like Masterman and McKinnon-Wood, passed on in

fairly recent years. (This situation prompted the forming of Birkbeck College’s

CACHe project80).

The second and perhaps more pressing issue is also hardly researched: this

is the spread of text machines in everyday life. There is little critical work on

this, although as I have pointed out, artists have quickly moved to appropriate

many of the dialogue formats and other phenomena associated with their

80

 See http://www.bbk.ac.uk/hosted/cache/History.html “The CACHe project was founded to
rescue a pioneering branch of British art from unjustified obscurity”, following the death of
pioneer John Lansdown.

http://www.bbk.ac.uk/hosted/cache/History.html

 132

workings. Theory and practice are running at different speeds. What

commentary there is has focused, of course, more on the writings than the

machine that writes. This, as noted, is the usual circumstance and in part

represents a textual prejudice, one that places textual artefacts above the

mechanical. This a position that I feel cannot continue if we are to get to

understand these sorts of texts, not merely as a literary or artistic genre but as

social practice of human and machine. It is something that I suggest is set to

change as interest moves from the literary endeavours of the past to new

forms of electronic writing based on new forms of data structure.

The two projects are in fact related. It is not possible to know the bureaucratic

text machine without the poetry machine, the novel writing machine without

the military machine. This is because their origins are not completely

separate, nor are their methods and workings, as I have made clear above.

The industrialisation of the text machine and its relation to the literary and

artistic is a project begun in this thesis, and in the practice that accompanies it

at www.in-vacua.com. This website includes some artwork that is an

archaeology of the text machine. It also offers a perspective on how it is

possible to develop an engagement with text on the Internet, its modes of

interaction, of display, its appearance, its structures, its machines. This project

remains to be developed through closer analysis of text machines in action

and through work that investigates that functioning. My future research looks

forward to these possibilities both in my practice and theoretical work.

http://www.in-vacua.com/

 133

Bibliography

Aarseth, E.J. (1997) Cybertext. Perspectives on Ergodic Literature. Baltimore

and London, The Johns Hopkins University Press.

Adorno, T. and Horkheimer M. (1999) Dialectic of Enlightenment,

London, Verso.

Adorno, T. (1997) Aesthetic Theory. London and New York, Continuum.

Alberro, A. (1999) ‘reconsidering conceptual art, 1966-1971’, in conceptual

art: a critical anthology. (Eds.) Alberro, A. and Stimson, B. Cambridge

Massachusetts, MIT, xvi-xxxsviii.

Albert, S. review: John Thomson and Allison Craighead in Tate Britain, Cream

1, <http://www.nettime.org/nettime/archive/200104/msg00027.html> (4th April

2001), 1-2.

Albert, S. Artware, - Art, Software and Conceptualism

<http://twentiethcentury.com/saul/artware.htm> (28th November 2002).

Altshuler, B. Art by Instruction and the Pre-History of do it <http://www.e-

flux.com/projects/do_it/notes/essaye002_text.html (19th May 2003).

Andersen, P. B. (1994) ‘Introduction’, in Andersen, P. B. et al The computer

as medium. New York, Cambridge University Press, 9-16.

Andersen, P. B. (1994) ‘A semiotic approach to programming’, in Andersen,

P.B. et al, The computer as medium. New York, Cambridge University Press,

16-68.

 134

Armstrong, D. M. (1989) Universals: an opinionated introduction. Colorado

and London, Westview Press.

Arns, I. (2001) Texts That Move (Themselves): Notes on the Performativity of

Programming Codes in Net Art (Abstract) <http://amor.rz.hu-

berlin.de/~h2863i74/abstracts-e.html> (11th August 2005).

Art and Language (Eds.) (1969) ‘Introduction’, in conceptual art: a critical

anthology, (Eds.). Alberro, A. and Stimson, B. (1999), Cambridge Mass. MIT,

98-106.

Asselin, O. (1992) ‘The Sublime: The of Limits of Vision and Inflation of

Commentary’, in Theory Rules, (Eds.) Berland, J. et al. Toronto, YYZ &

University of Toronto Press, 243-265.

Atkinson, T. (1968) ‘Concerning the Article “The Dematerialization of Art”’, in

conceptual art: a critical anthology, (Eds.) Alberro, A. and Stimson, B. (1999),

Cambridge Mass. MIT, 52-58.

Austin, J. L. (1978) How To Do Things With Words. Oxford, OUP.

Bailey, R. W. (1973) Computer Poems. Michigan, Protogannissing Press.

Bailey, R. W. (1974) ‘Computer-assisted poetry: the writing machine is for

everybody’ in, Computers and the humanities, Mitchell, J.L. (Ed.) Edinburgh

University Press, 288-296.

Barger, J. “The Policeman’s Beard” Was Largely Prefab!

<www.robotwisdom.com/ai/racterfaq.html> (18th November 2003).

Barnet, B. Technical Machines and Evolution, <www.ctheory.net/text_file?

pick=414> (1st May 2004).

 135

Barthes, R. (1967) Elements of semiology, trans. Lavers, A. and Smith, C.

London, Jonathan Cape.

Barthes, R. (1977) “The death of the author”, in Art: Context and Value, (Ed.)

Simm, S. (1992). Oxford, Oxford University Press, 60-64.

Baudrillard, J. (1993) Symbolic Exchange and Death, trans. Grant, I. H.,

London, Sage.

Baumgartel, T. (2001) [net.art 2.0] New Materials towards Net.art. Nurnberg,

Verlag.

Beech, D. Another Tyson Ear Bending: Dave Beech Talks to Keith Tyson,

<http//www.backspace.org/everything/e/hard/texts2Tyson.html> (27th

February 2002).

Beiles, S. (1960) Minutes to go. Paris, Two City Editions.

Berry, J. Net Art. Unpublished PhD Thesis. University of Manchester.

<http://www.tate.org.uk/netart/humanposthuman.htm> (28th November 2003).

Blackmore, S. (1999) The Meme Machine, Oxford, Oxford University Press

Bloor, D. C. (1997) Wittgenstein, Rules and Institutions. London, Routledge.

Bök, C. The Piecemeal Bard Is Deconstructed: Notes Toward a Potential

Robopoetics <http://www.ubu.com/papers/object/03_bok.pdf>

Bolter, J. D. and Grusin, R. (2000) Remediation. Cambridge Mass., MIT.

Bolter, J. D. (2001) writing space: computers, hypertext, and the remediation

of print, Mahwah, N.J., Lawrence Erlbaum Associates.

 136

Borges, J. L. (1999) The Total Library: Non-Fiction 1922-1986. Edited by

Weinberger, E. Trans. A., Levine, S. J. and Weinberger, E. Harmondsworth,

Middlesex, Penguin.

Brandt, P. A. (1994) ‘Meaning and machine: Toward a semiotics of

interaction’, in Andersen, P. B. et al The computer as medium. New York,

Cambridge University Press, 128-141.

Buchloh, B. H. D. (1989) ‘Conceptual Art 1962-1969: From the Aesthetic of

Administration to the Critique of Institutions’, in conceptual art: a critical

anthology, (Eds.) Alberro, A. and Stimson, B. (1999) Cambridge

Massachusetts, MIT, 514-537.

Bulhak, A. C. (1996) On the Simulation of Postmodernism and Mental Debility

using Recursive Transition Networks. <http://www.csse.monash.edu.au/cgi-

bin/pub_search?104+1996+bulhak+Postmodernism> (2nd August 2004).

Burnham, J. (1968) ‘Systems Esthetics’, in Great Western Salt Works, essays

on the meaning of Post-Formalist art (1974). New York, George Braziller Inc.

Burnham, J. (1970) ‘Notes on Art and Information Processing’, in Software

Information Technology: Its New Meaning for Art. New York: Jewish Museum

Burroughs, W. (2001) The Ticket That Exploded. London, Harper Collins.

Bury, S. (1995) Artists’ Books. The book as a work of art, 1963-1995.

Aldershot, Scholar Press.

Bush, V. As We May Think (1945) <http://www.csi.uottawa.ca/~dduchier/misc/

vbush/awmt.html> (20th November 2004).

Calvino, I. (1997) ‘Cybernetics and Ghosts’, in The Literature Machine.

London, Vintage, 3-28.

 137

Chomsky, N. (1969) Syntactic Structures. Cambridge Mass. MIT.

Chomsky, N. (2002) New Horizons in the Study of Language and Mind.

Cambridge, CUP.

Christiansen, T. and Torkington, N. (2003) Perl Cookbook. O’Reilly,

Sebastopol, CA.

Conway, D. (1998) The man (1) of descent

<http://search.cpan.org/src/DCONWAY/Parse-RecDescent-

1.94/tutorial/tutorial.html> (20th August 2005).

Cook, S. (2004) The Search for a Third Way of Curating New Media Art:

Balancing Content and Context In and Out of the Institution. Unpublished

Ph.D. thesis, University of Sunderland.

Copeland, J. and Haemer, J. (2001) Work: Nonsense

<http://alumnus.caltech.edu/~copeland/work/junktext.html> (12th August 2004)

Corby, T (2001) The disappearing frame: a practice-based investigation into

the composition of virtual environment artworks. Unpublished PhD thesis,

University of the Arts, London.

Cornwell, R. (1993) ‘From the Analytical Engine to Lady Ada’s Art’, in

Iterations: The New Image, (Ed.) Druckery, T. Cambridge M.A., M.I.T, 41-61.

Cox, G. MPhil/PhD Transfer Report, anti-thesis: the dialectics of generative

art (as praxis) <http://www.anti-thesis.net/> (20th September 2004).

Cramer, F. (2000) COMBINATORY POETRY AND LITERATURE IN THE

INTERNET

<http://www.userpage.fuberlin.de/~cantsin/homepage/writings/net_literature/p

er> (19th October 2000).

 138

Cramer, F. (2001a) Digital Code and Literary Text, <http://www.userpage.fu-

berlin.de/~cantsin/hom…t_2001/digital_code_and_literary_text.txt> (27th

September 2001).

Cramer, F and Gabriel, U. ‘Software Art and writing’, American Book Review,

vol. 22, number 6, September/October 2001, p8.

Cramer, F. (2002a) Concepts, Notations, Software, Art. <http://www.macros-

center.ru/read_me/teb2e.htm (7th October 2002).

Cramer, F. Digital Code and Literary Text, <http://userpage.fu-

berlin.de~cantsin/hom…t_2001/digital_code_and_literary_text.txt > (27th

February 2002).

Cramer, F (2003) .walk <http://www.runme.org/feature/read/+dot-walk/+31/>

(2nd April 2005).

Cramer, F. (2003) ‘Exe.cut[up]able statements: The Insistence of Code’, in

(Eds) Stocker, G. and Schöpf, C. Code : code - the language of our time,

Ostfildern, Hatje Cantz.

Cramer, F. (2005) WORDS MADE FLESH. Code, Culture, Imagination.

Rotterdam, Piet Zwart Institute. <http://pzwart.wdka.hro.nl/mdr/research/

fcramer/wordsmadeflesh/wordsmadefleshpdf> (28th July 2005).

Crystal, D. (2001) Language and the Internet. Cambridge, Cambridge

University Press.

Dale et al, Using Natural Language Generation Techniques to Produce Virtual

Documents <http://www.ics.mq.edu.au/~rdale/publications/papers/1998/

adcs98.pdf.> (27th August 2004).

 139

Dawkins, R. (1982) Extended phenotype : the gene as the unit of selection,

San Francisco, Freeman.

Deleuze, G. and Guattari, F. (1994) Anti-Oedipus. Capitalism and

Schizophrenia, trans Hurley et al. London, The Athelone Press.

Deleuze, G. (1995) ‘Postscript on Control Societies’ in, negotiations 1972-

1990, trans. Joughin, M. New York, Columbia University Press: 177-183.

Deleuze, G and Guattari, F. (2003) A thousand plateaus; capitalism and

schizophrenia, trans. Massumi, B. London, Continum.

Derrida, J. (1976) Of Grammatology, trans. Chakravorty, G. Baltimore, The

John Hopkins University Press.

Derrida, J. (1979) ‘Living On: Border Lines’, in Deconstruction and Criticism,

Bloom, H. et al (Eds.), New York, Continuum.

Derrida, J. ‘ECONOMIMESIS’, DIACRITICS. Volume 11, 1981: 3-25.

Derrida, J. (1982) ‘The Pit and the Pyramid: Introduction to Hegel’s

Semiology’, in Margins of Philosophy, trans. Bass, A. Brighton, Harvester

Press, 69-109.

Derrida, J. (1978) ‘Structure, sign and play in the discourse of the human

sciences’, in Art: Context and Value, (Ed.) Simm, S. (1992). Oxford, Oxford

University Press, 402-417.

Duchamp, M. (1989) The writings of Marcel Duchamp. (Eds.) Sanouillet, M.

and Peterson, P. New York, Da Capo.

Duve, de T. (1999) Kant after Duchamp. Cambridge Mass. MIT.

 140

D´ýaz-Agudo, B. et al, (2002) Poetry Generation in COLIBRI

<http://gaia.sip.ucm.es/people/pedro/papers/2002_eccbr_belen.pdf> (12th

May 2005).

Eco, U. (1989) The Open Work. Cambridge Mass. Harvard University Press.

Eco, U. (2001) Foucault’s Pendulum, London, Vintage.

Ferrara, P. TEAnO, an Organization for the Application of Computers to Art

Production <http://people.etnoteam.it/maiocchi/teano/works/wordtemp/

sorbona.do> (22nd December 2003).

Festa, P. (2003) Spam-bot tests flunk the blind <http://news.com.com/2100-

1032-1022814.html > (25th May 2005).

Fields, C. (2002) ‘Measurement and Computational Description’ in, Machines

and Thought. The legacy of Alan Turing. Volume. 1. Oxford, Oxford

University Press, 165-179.

Finnemann, N.O. (1997) ‘Modernity Modernised – The Cultural Impact of

Computerisation’, in Mayer, P.A. (Ed.) Computer Media and Communication.

A Reader. Oxford, OUP, 144-160.

Finnemann, N. O. (1999) Thought, Sign and Machine – the Idea of the

Computer Reconsidered, trans Puckering G. L. <http://www.au.dk/ckulturf/

pages/publications/nof/tsm/abstract.html> (July 6th 2003).

Fuller, M. (2003) Behind The Blip. Essays On The Culture Of Software. New

York, Autonomedia.

Funkhouser, C. POETRY DIGITAL MEDIA AND CYBERTEXT

<http://web.njit.edu/~cfunk/SP/hypertext/POETRYDIGITALMEDIACYBERTEX

T2.doc> (10th July 2004).

 141

Galloway, A. Protocol or How Control Exists after Decentralization. Rethinking

Marxism, Number13, Volume 3/4 (Fall/Winter 2001)

<http://openflows.org/~auskadi/protocol.pdf> (10th February 2004).

Galloway, A. R. /RSG (2002) ‘How We Made Our Own “Carnivore”’ in (Eds.)

Stocker, G. and Schopf, C. Unplugged. Art as the Scene of Global Conflicts.

Ars Electronica 2002, Ostfildern-Ruit Germany, Hatje Cantz Publishers, 350-

355.

Galloway, A. R. (2004) Protocol. How Control Exists after Decentralization.

Cambridge Mass. MIT.

Gere, C. (2002) Digital Culture. London, Reaktion Books.

Gervás, P (2002) “Exploring Quantitative Evaluations of the Creativity of

Automatic Poets,

<http://calisto.sip.ucm.es/people/pablo/papers/GervasECAIws2002.pdf> (14th

April 2005).

Glazier, P. L. (2002) Digital Poetics: The Making of E-poetries (Modern and

Contemporary Poetics). Tuscaloosa, University of Alabama Press.

Goodman, N. (1969) Languages of Art. An Approach To A Theory Of

Symbols. London, Oxford University Press.

Goriunova, O. and Shulgin, A. Artistic Software for Dummies and, by the way,

Thoughts About the New World Order. <http//:www.macros-center.ruread_me/

teb1e.htm> (27th July 2003).

Graham, B. (1997) A Study of Audience Relationships with Interactive

Computer-based Visual Artworks in Gallery Settings, through Observation, Art

Practice, and Curation. Unpublished Ph.D. thesis, University of Sunderland.

 142

Gray, C. and Malins, J. (1993) Research Procedures/Methodology for Artists

& Designers. < http://www2.rug.ac.uk/criad/cgpapers/epgad/epgad.html>

(November 12th 2003).

Greenberg, C. ‘Modernist Painting’ in, The Collected Essays and Criticism.

Volume 4.Modernism with a Vengeance, 1957-1969. (Ed.) O’Brian, J.

Chicago and London, University of Chicago Press: 85-94

Grusin, R. (1996) ‘What is an Electronic Author? Theory and the

Technological Fallacy’, in Virtual Realities and Their Discontents. (Ed.)

Markley, R. Baltimore and London, The Johns Hopkins University Press: 39-

55.

Hansen, M. B. N. (2004) New Philosophy for New Media. Cambridge Mass,

MIT.

Hardt, M. and Negri A. (2000) Empire. Cambridge Mass. Harvard University

Press.

Hatherley, A. (1972) ‘the art of letting things happen, a letter to sylvester

houedard’, ceolfrith 15. ceolfrith arts centre, 41-42.

Harel, D. (1988) Algorithmics: the spirit of computing. Wokingham, Addison

Wesley.

Hartman, C. O. (1996) Virtual Muse: Experiments in Computer Poetry.

University Press of New England, Hanover NH.

Hayles, N. K. (1994) ‘Chance Operations: Cagean Paradox and

Contemporary Science’. John Cage - Composed in America. (Eds.) Perloff,

M. and Junkerman, C. Chicago, Chicago University Press: 226-241.

Hayles, N. K. (1999) How we became posthuman: virtual bodies in

cybernetics, and informatics. London, University of Chicago Press.

 143

Hayles, N. K. (1999.b) ‘THE CONDITION OF VIRTUALITY ’ in, The Digital

Dialectic. New Essays on New Media. (Ed.) Lunenfield, P. Cambridge Mass.

MIT, 68-96.

Hayles, N. K. (2002) Writing Machines. Cambridge and London, MIT.

Hayles, N. K. What Cybertext Theory Can’t Do

<http://www.electronicbookreview.com/v3/servlet/ebr?command

=view_essay&essay_id=haylesonerip> (20th April 2004).

Higgs, M. (1996) Five Bookpages. London, Frith Street Gallery.

Hillis, W. D.l (1999) The Pattern on the Stone. The simple ideas that make

computers work. New York, Perseus Books.

Hodges, A. (1983) Alan Turing: The Enigma of Intelligence. Unwin

Paperbacks, London.

Hodges, S. (2004) REVEALING CODE: WHAT CAN LANGUAGE TEACH

SOFTWARE? Unpublished M.Sc thesis. Georgia Institute of Technology.

Hoftstadter, Douglas R. (1999) Godel, Escher, Bach: An Eternal Golden

Braid. Harmondsworth, Middlesex, Penguin.

Ingarden, R. (1986) The Work of Music and the Problem of Its Identity, trans.

Czerniawski, A., edited by Harrell, J.G., Berkeley, University of California

Press.

Jakobson, R. (1990) On Language, (Eds.) Waugh, L.R. and Monville-Burston,

M. Cambridge Mass., Harvard University Press.

 144

Jameson, F. (1999) ‘Marxism and Dualism in Deleuze’, in A Deleuzian

Century? (Ed.) Buchanan, I. Durham and London, Duke University Press: 13-

37.

Jevbratt, L. (2001a) Perl is My Medium--An Interview with Lisa Jevbratt

<http://rhizome.org/thread.rhiz?thread=1696&text=2218#2218> (15th February

2005).

Jevbratt, L. (2001b) Coding the Infome, Writing Abstract Reality <

http://dichtung-digital.com/2003/issue/3/Jevbratt.htm> (15th February

2005).

Joyce, M. (1995) Of two minds: hypertext pedagogy and poetics.

Ann Arbor, University of Michigan Press.

Joyce, M. (1999) Afternoon, a Story. Watertown, Eastgate Systems Inc.

Kafka, F. (1992) ‘In the Penal Colony’ in, Kafka: The complete short stories.

Minerva, London, 140-168.

Kant, I. (2001) Critique of the Power of Judgement. Cambridge, CUP.

Kaprow, A. (1993) Essays on the blurring of life and art. (Ed.) Kelley, J.

London, University of California Press.

Kendrick, M. ‘Cyberspace and the Technological Real’, in Virtual Realities and

Their Discontents. (Ed.) Markley, R. Baltimore and London, The Johns

Hopkins University Press, 143-161.

Kernighan, B. W and Pike, R. (1999) The Practice of Programming.

Reading, MA, Addison-Wesley.

Ketner, K. L. ‘Peirce and Turing: Comparisons and conjectures’, Semiotica,

68-1/2, 1988, 33-61.

 145

Kittler, F.A. (1990) Discourse networks 1800/1900, trans. Metteer, M, and

Cullens, Stanford California, Stanford University Press.

Kittler, F.A. (1999) Gramophone, Film, Typewriter. Trans. Winthrop-Young, G.

and Wutz, M. Standford, California, Standford University Press.

Kozlowski, J. (1972) REALITY. ZPAP, Posnan.

Knuth, D.E. (1975) The Art of Computer Programming, Volume 1,

Fundamental Algorithms. London, Addison-Wesley.

Krauss, R. ‘Reinventing the Medium’, Critical Inquiry, 25 (Winter 1999), 289-

305.

Krauss, R. (1999) A Voyage on the North Sea. Art in the Age of the Post-

Medium Condition, London, Thames and Hudson.

Kripke, S. (1982) Wittgenstein on rules and private language. Oxford,

Blackwell.

Lambert, N. (2003) A critical examination of computer art: its history and

application. Unpublished D.Phil thesis, Oxford University.

Landow, G. P. (1996) ‘We Are Already Beyond the Book’, in, Beyond the

Book. Theory, Culture and the Politics of Cyberspace. (Eds.) Chernaik, W. et

al. Oxford, Office of Humanities Communication, 23-31.

Landow, G. P. (1997) Hypertext 2.0. Baltimore, Johns Hopkins University

Press.

Lavoie, B. and Rambow, O. (1997) A Fast and Portable Realizer for Text

Generation Systems <http://www.cogentex.com/papers/realpro-anlp97.pdf>

(13th August 2004).

 146

Leibniz, G. (1951) ‘Towards a Universal Characteristic’, in Selections, (Ed.)

Weiner, Philip, P. New York, Charles Scribners Sons, 17-26.

Lessig, L. (1999) Code and other laws of cyberspace, New York, Basic

Books.

Libeskind, D. (1991) ‘Three Lessons in Architecture’, in countersign. London,

Academy Editions.

Lippard, L. and Chandler, J. (1968) ‘The Dematerialization of Art’, in

conceptual art: a critical anthology. (Eds.) Alberro, A. and Stimson, B. (1999).

Cambridge Mass. MIT, 46-52.

Lister, M. et al, (2003) New Media: a critical introduction. London, Routledge.

Lunenfeld, P. (2000) Snap to grid: a user's guide to digital arts, media, and

cultures. Cambridge, Mass. MIT.

Lunenfeld, P. (1999) (Ed.) The Digital Dialectic: essays on new media.

Cambridge Mass., MIT.

Luntley, M. (2003) Wittgenstein: Meaning and Judgment. Oxford, Blackwell

Publishing.

Lutz, T. (1959) Stochastic texts <http://www.stuttgarter-

schule.de/lutz_schule_en.htm> (10th April 2005).

Macleod, K. The Functions of the Written Text in Practice Based PhD

Submissions. <http://www.herts. ac.uk/artdes1/research/papers/wpades/

vol1/macleod2.html> (20th September 2004)

Manovich, L. (1999) ‘WHAT IS DIGITAL CINEMA?’ in, The Digital Dialectic.

New Essays on New Media. (Ed.) Lunenfield, P. Cambridge Mass. MIT, 172-

194.

 147

Manovich, L. (2001) The Language of New Media. Cambridge Mass, MIT.

Manovich, L. Don’t Call it Art, <http://channels.mur.at/muratnews/

1064432189/index_html> (28th November 2003).

Manurung, H. M. (2003) An evolutionary algorithmic approach to poetry

generation. Unpublished PhD. University of Edinburgh.

Markley, R. (1996) ‘Introduction: History, Theory, and Virtual Reality’, in

Virtual Realities and Their Discontents. (Ed.) Markley, R. Baltimore and

London, The Johns Hopkins University Press, 1-11.

Masten, J. et al (Eds.) (1997) Language machines: technologies of literary

and cultural production. New York, Routledge.

Masterman, M. (1971) ‘Computerized haiku’, in Cybernetics, art and ideas,

(Ed.) Reichardt, J. London, Studio Vista, 175-184.

Mathews, H. and Brotchie, A. (1998) Oulipo Compendium. London, Atlas

Press.

Mencia, M. (2004) Visual Poetry to Digital Art: Image-Sound-Text, Convergent

Media and the Development of New Media Languages. Unpublished PhD

thesis, University of the Arts, London.

Mendoza, E. (1968) ‘Computer texts or high-entropy essays’, in Cybernetic

serendipity: the computer and the arts, (Ed.) Reichardt, J. London, Studio

Vista.

Mendoza, E. (1973) ‘Computer, B.S.c. (failed)’ in, A random walk in science.

(Eds.) Weber, R.L. and Mendoza, E. The Institute of Physics, London and

Bristol, 145-146.

 148

Merrell, F. (1997) Peirce, Signs, and Meaning. Toronto, University of Toronto

Press.

Microsoft, Volume Licensing Overview

<http://www.microsoft.com/licensing/resources/default.mspx> (2nd May 2005).

Millan, N (2001) COMPUTER GENERATED POETRY AND VISUAL ARTS.

Unpublished M. Sc. thesis, University of Birmingham.

<http://www.cs.bham.ac.uk/~nxm/mscPoetry/survey/CGPoetry.htm#_Toc5256

19646> (17th July 2005).

Montfort, N. Cybertext Killed the Hypertext Star <http://www.

Electronicbookreview.com/v3/servlet/ebr?command=view_essay&essay_id>

(20th April 2004).

MSN, About typing characters from a picture

<https://help.msn.com/!data/en_us/data/passportv31.its51/$content$/PP_TRO

U_REG_TypeCharactersFromAPictureToSignUp.htm> (20th April, 2005).

Mumford, L. (1967) The myth of the machine: technics and human

development. London, Secker & Warburg

Murray, J. H. (1997) Hamlet on the Holodeck. The Future of Narrative in

Cyberspace. Cambridge Mass. MIT.

Musker, D. C. (1998) REVERSE ENGINEERING, paper presented at

"Protecting & Exploiting Intellectual Property in Electronics", IBC Conferences,

10th June 1998 <http://www.jenkins-ip.com/serv/serv_6.htm> (29th August

2004).

Naughton, J . (2000) A Brief History of the Future. The Origins of the Internet.

London, Weidenfeld and Nicholson.

Ono, Y. (1995) Instruction Paintings, New York, Weatherhill, Inc.

 149

Osborne, P. ‘The Reproach of Abstraction’ in, Radical Philosophy, a journal of

socialist and feminist philosophy, 127, September/October 2004: 21-29.

Parrish, K. How We Became Automatic Poetry Generators: It Was The Best

Of Times, It Was The Blurst Of Times. < http://www.ubu.com/papers/

object/07_parrish.pdf> (19th August 2005).

Perec, G. (1996) Life A User’s Manual. Trans. Bellos, D. London, The Harvill

Press.

Peirce, C.S. (1989) Collected Papers of Charles Sanders Peirce. Volume 4.

The Simplest Mathemetics. (Eds.) Hartshorne, C. and Weiss, P. Thoemmes

Press, Bristol.

Peirce, C.S. (1991) ‘Minute Logic’ in, Peirce on signs : writings on semiotic.

(Ed.) James Hoopes. Chapel Hill, University of North Carolina Press, 231-

241.

Pierce, J. R. (1971) ‘A chance for art’, in Cybernetics, art and ideas, (Ed.)

Reichardt, J. London, Studio Vista, 46-57.

Pierce, J. R. (1980) An Introduction to Information Theory. Symbols, Signs

and Noise. New York, Dover Publications, Inc.

Potter, K. (2000) Four Musical Minimalists. Cambridge, Cambridge University

Press.

Racter (1984) The Policeman's beard is half-constructed. Illustrations by Joan

Hall. Introduction by William Chamberlain. New York, Warner

Software/Warner Books.

 150

Rettberg, S. (2003) Destination Unknown: Experiments in the Network Novel.

Unpublished PhD Thesis, University of Cincinnati.

<http://huco.ualberta.ca/~sah4/FIS3005/fis3005_dissertations.doc> (20th

February 2004).

Roussel, R. (1995) How I Wrote Certain Of My Books And Other Writings By

Raymond Roussel. (Ed.) Winkfield, T. Cambridge MA, Exact Change.

Saussure, F. de (1983) Course in General Linguistics, trans. Harris, R.,

London, Duckworth.

Schmitz, U. (1994) Rezension: Automatic generation of texts without using

cognitive models: television news < http://www.linse.uni-

essen.de/webEdition/we_cmd.php?we_cmd%5B0%5D=show&we_cmd%5B1

%5D=1052&we_cmd%5B4%5D=136> (19th August 2004).

Scholder, A. and Crandall, J. (Eds.) (2001) INTERACTION. ARTISTIC

PRACTICE IN THE NETWORK. New York, D.A.P./Distributed Publishers.

Schwartz, R. L. Writing Randomly. Linux Magazine Column 04, Sept 1999.

<http://www.stonehenge.com/merlyn/LinuxMag/col04.html> (4th August 2004).

Schwartz, R. L (2004) Creating an Inline Language <http://www.linux-

mag.com/2004-03/perl_01.html> (4th August 2004).

Seaman, W.C. (1999) Recombinant Poetics: Emergent Meaning as Examined

and Explored Within a Specific Generative Virtual Environment. Unpublished

PhD thesis, Centre for Advanced Inquiry in the Interactive Arts, University of

Wales, Newport.

Searle, J. R. ‘Minds, Brains, and Programs’, The Behavioural and Brain

Sciences, vol. 3. Cambridge University Press, 1980.

 151

Simon, J.F. Jr., Every Icon - Parachute Text

<http://www.numeral.com/articles/paraicon/paraicon.html> (2nd August 2004).

Simanowski, R. (2003) REVIEW on Nicolas Clauss, <http://www-

users.cs.york.ac.uk/~salfiore/aesthetic%20of%20interaction%20papers/dichtu

ng-digital%ffParis%20Connection.htm> (11th August 2005).

Shannon, C. E. (1948) ‘A Mathematical Theory of Communication’, in The Bell

System Technical Journal, Vol. 27, July, October 1948, 379-423, 623-656.

Sloman, A (2002) ‘Beyond Turing Equivalence’ in, Machines and Thought.

The legacy of Alan Turing. Volume. 1. (Eds.) Millican, P. and Clark, A Oxford,

Oxford University Press: 179-221.

socialfiction.org, THE TECHNOLOGY WILL FIND USES FOR THE STREET

ON IT'S OWN <http://socialfiction.org/dotwalk/dummies.html > (1st April

2005).

Sohm, H (1970) Happenings & Fluxus. Köln, Kölnischer Kunstverein.

Sokal, A .D. (1996) Transgressing the Boundaries: Towards a Transformative

Hermeneutics of Quantum Gravity

<http://www.physics.nyu.edu/faculty/sokal/transgress_v2/transgress_v2_singl

efile.html> (20th August 2004).

Sokal, A .D. (1996) Transgressing the Boundaries: An Afterword,

<http://www.physics.nyu.edu/faculty/sokal/afterword_v1a/afterword_v1a_singl

efile.html> (20th August 2004).

Sondheim, A. Reviews of some recent books and then some -

<http://www.nettime.org/Lists-Archives/nettime-l-0508/msg00017.html> (11th

August 2005).

 152

Stallabrass, J. (2003) Internet art: the online clash of culture and commerce.

London, Tate Publications.

Starobinski, J. (1979) Words upon words: the anagrams of Ferdinand de

Saussure, London, Yale University Press.

Stocker, G. and Schöpf, C. (2003) Code : code - the language of our time,

code = law, code = art, code = life. Ostfildern-Ruit , Hatje Cantz.

Swift, J. (1963) Gulliver’s Travels. New York, Airmont Books.

Thomson, J. and Craighead, A. (2005) READ_ ME

<http://www.computerfinearts.com/collection/thomson_craighead/beacon/bea

con/rtf> (September 29th 2005).

Touretzky, D. Basics of Information Theory. <www-.cs.cmu.edu/~dst/Tutorials/

Info-Theory/>, (5th January 2004).

Turing, A. (1950) Computing Machinery and Intelligence

<http://www.iemar.tuwien.ac.at/html/lectures/272045/ComputingMachineryAn

dIntellignence_Turing.pdf> (9th February 2003).

Turing, A. (1936) ON COMPUTABLE NUMBERS, WITH AN APPLICATION

TO THE ENTSCHEIDUNGSPROBLEM <http://www.abelard.org/turpap2/tp2-

ie.asp> (9th February 2003).

Turner, J. and Hocking, D. ‘Synergy in art and language: positioning the

language specialist in contemporary fine art study’. Art Design &

Communication in Higher Education. Volume 3, Number 3, 2004: 149-162.

Twain, M. (1906) THE FIRST WRITING-MACHINES

<http://www.gutenberg.org/files/142/142.txt> 12th April 2005.

 153

Tyson, K. explanation <http://adaweb.walkerart.org/influx/tyson/

explanation.html> (23rd June 2004).

Uneson, M. (2003) HORACE – an artificial columnist

<http://www.cs.lth.se/Education/LTH/EDA170/Reports2003/marcus.pdf> (1st

August 2004).

Von Neumann, J. (2000) The Computer and the Brain. London, Yale

University Press.

W3C, Rule Language Standardization, Report from the W3C Workshop on

Rule Languages for Interoperability <http://www.w3.org/2004/12/rules-

ws/report/> (May 1st 2005).

Wall, J. (1991) Dan Graham’s Kammerspiel. London, Art Metropole.

Wall, L. (2000) Programming Perl. Sebastopol, CA. O’Reilly

Ward, A. and Cox, C. How I Drew One of My Pictures: or, The Authorship of

Generative Art, <www.generative.net/papers/authorship> (20th October 2002).

Ward, A. et al, Live Algorithm Programming and a Temporary Organisation for

its Promotion <http://art.runme.org/1107861145-2780-0/livecoding.pdf> (5th

January 2005).

Weizenbaum, J. (1976) Computer power and human reason. San Francisco,

W. H. Freeman and Company.

Whitby, B. ‘The Turing Test: AI’s Biggest Blind Alley’ in, Machines and

Thought. The legacy of Alan Turing. Volume 1. (Eds) Millican, P. and Clark, A.

Oxford, Oxford University Press: 53-63.

Williams, C.F.J. (1989) What Is Identity? Oxford, Clarendon Press.

 154

Wilson, S. (2002) Information arts: intersections of art, science, and

technology. Cambridge Massachusetts, MIT.

Wittgenstein, L. (2001) Philosophical Investigations. Trans. Anscombe, G. E.

M. Oxford, Blackwell.

Wolff, M. Reading Potential: The Oulipo and the Meaning of Algorithms

<http://mustard.tapor.uvic.ca/cocoon/ach_abstracts/xq/pdf.xq?id=45> (21st

August).

Yuill, S. CODE ART BRUTALISM: LOW-LEVEL SYSTEMS AND SIMPLE

PROGRAMS <http://art.runme.org/1107798902-7563-0/yuill.pdf> (1st August

2005).

Zimmerman, M. E. (1990) Heidegger’s Confrontation with Modernity.

Technology, Politics and Art. Bloomington and Indianapolis, Indiana University

Press.

Zizek, S. (1997) The Plague of Fantasies. London, Verso.

Zizek, S. (2004) Organs without Bodies. On Deleuze and Consequences.

Routledge, New York and London.

 155

Selected Websites

Automated Beacon:

http://www.computerfinearts.com/collection/thomson_craighead/beacon/index.

html

Computer Generated Writing:

http://www.evolutionzone.com/kulturezone/c-g.writing/index_body.html

Cosign:

http://www.cosignconference.org/

CPAN: Comprehensive Perl Archive Network:

http://www.cpan.org/

DO IT at e-flux:

 http://www.e-flux.com/projects/do_it/homepage/do_it_home.html

THE INJUNCTION GENERATOR:

http://ipnic.org/

The Institute of Infinitely Small Things, 100 (11) Instruction Works:

http://www.ikatun.com/100-11/

Permutations:

http://userpage.fu-berlin.de/~cantsin/permutations/index.cgi

 Poetry Links –Tools –:

http://www.eskimo.com/~rstarr/poormfa/poemtool.html

http://www.computerfinearts.com/collection/thomson_craighead/beacon/index.html
http://www.computerfinearts.com/collection/thomson_craighead/beacon/index.html
http://www.evolutionzone.com/kulturezone/c-g.writing/index_body.html
http://www.cosignconference.org/
http://www.cpan.org/
http://www.e-flux.com/projects/do_it/homepage/do_it_home.html
http://ipnic.org/
http://www.ikatun.com/100-11/
http://userpage.fu-berlin.de/~cantsin/permutations/index.cgi
http://www.eskimo.com/~rstarr/poormfa/poemtool.html

 156

The Postmodernism Generator: Communications From Elsewhere:

http://www.elsewhere.org/cgi-bin/postmodern/

The Random Sentence Generator:

http://www-cs-faculty.stanford.edu/~zelenski/rsg/

Replicators

http://adaweb.walkerart.org/influx/tyson/

Rhizome:

http://www.rhizome.org

runme.org:

http://www.runme.org

The Status Project:

http://status.irational.org/

TEAnO:

http://people.etnoteam.it/maiocchi/teano/home.htm

Appendix: Evidence of Work 1

http://www.elsewhere.org/cgi-bin/postmodern/
http://www-cs-faculty.stanford.edu/~zelenski/rsg/
http://adaweb.walkerart.org/influx/tyson/
http://www.rhizome.org/
http://www.runme.org/
http://status.irational.org/
http://people.etnoteam.it/maiocchi/teano/home.htm

 157

(The text of a presentation at CHArt, the computers in art history group, http://www.chart.ac.uk/,

Birkbeck University, London, 2005, and published by CHArt).

Computer Poetry’s Neglected Debut

“Cyberpoetry has not been attacked. It has never been very real, and never enough
unreal. Nothing has been accomplished, though variations against the normative
patterns have been made, perhaps with too small a price. Cyberpoetry, as it is, will
produce no martyrs, only house guests.”

Stefans, B. K. (2003) Fashionable Noise. On Digital Poetics. p. 45.

1.

I am particularly grateful to Jasia Reichardt, the curator of Cybernetic

Serendipity, for her advice and assistance.

I examined the archive at the Tate Gallery’s (London) Research Centre. This

archive contains files of material from the ICA Gallery (where Cybernetic

Serendipity was shown in 1968.) I wish to thank their staff for their help.

I am grateful to Professor Brent MacGregor (Edinburgh College of Art) who

has granted me permission to use two images (from the original ICA show) of

COMPUTERIZED HAIKU in his possession.

Attempts were made, without success, to contact the Cambridge Language

Research Unit where Margaret Masterman and Robin McKinnon-Wood, the

http://www.chart.ac.uk/

 158

creators of COMPUTERIZED HAIKU, held senior posts. However, the Unit is

no longer active according to a Charity Commission report.81

2.

In a recent paper presented at CHArt’s 2002 conference Lanfranco Aceti82

(quoting Jon Ippolito, curator of the Virtual Projects and Internet Art

Commissions at the Guggenheim Museum in New York) spoke about “the

need to preserve behaviours rather then media”. Aceti appears to oppose this

curatorial venture83. But whether desirable or not, what is it to preserve

behaviour? Is behaviour separable from media?

For me today, this is to ask why reprogram COMPUTERIZED HAIKU? In what

sense can we say we preserve COMPUTERIZED HAIKU by its

programming? After all, little remains of COMPUTERIZED HAIKU, neither the

hardware (the computer) nor its original program. What does remain is an

essay written by one of its creators, Margaret Masterman (1971). In this essay

there is enough – a template for a verse structure and lists of words to fill it –

to sponsor the making of a version of the work. I have, in other words, written

a program that will produce similar verses to the original.

But why do this? COMPUTERIZED HAIKU, precisely because the program

was missing, was for me to be the opportunity to conduct a demonstration.

My recent research84 has been into instructions. Masterman’s essay, I

realised, could be turned from description to instruction. It could be translated

from a human readable account back to a machine executable program.

81

 “The charity has no plans for future research and subject to finding a suitable home for the
research archives it is intended to wind up the charity”, <http://www.charity-
commission.gov.uk/ investigations/inquiryreports/> (22

nd
 October 2004).

82

 Aceti (2002)

83

 Ibid. “The preservation of behaviours in the artists' practice seems to be the main concern
in contemporary digital art practice, where the presence of 'software corporate powers' are
imposing a methodology upon art practice.”

84

 At Chelsea College of Art and Design, London, UK.

 159

COMPUTERIZED HAIKU I saw as an artwork that might be thought of as a

sort of computation in Alan Turing’s sense of the word: a pencil and paper

instruction that might be performed by a human ‘computer’ (that is, someone

who ‘computes’) – or as a program executed by a machine.

This might be an artwork that is the preservation of behaviours, not the

conservation of things. That is what is preserved, but what is lost in this

process?

What are lost are the historical and material circumstances that attended the

appearance of COMPUTERIZED HAIKU. It is these that I wish to attend to

now, pointing up differences between the original version and my remaking of

the work as I progress.

3.

To return to COMPUTERIZED HAIKU is to return to the early days not only of

computerised art and literature but also of computing and the still relatively

new science of cybernetics. Cybernetic Serendipity was the first major

exhibition of computer art (although there had been several earlier exhibitions

of computer graphics.) Cybernetic Serendipity was unusual in many ways.

Scientists mixed with artists and no rigid distinction was made between visual

art and literature85.

In those days everything must have seemed possible and most things still to

be done. Looking back from our vantage point, it is possible to observe how

much is different – and what may seem the same.

85

 There is a list of Addresses of Major Contributors To Cybernetic Serendipity in the Tate
archive. The contributors of text pieces, including Masterman and McKinnon-Wood, are listed
under “graphics” (the other categories are “music”, “film” and “machines”.)

 160

If we look at my recreation of COMPUTERIZED HAIKU (fig 1) and compare it

with images from the original show (figs 2 and 3) we may note some of the

differences.

Plate 1

Screen grab of http://www.in-vacua.com/cgi-bin/haiku.pl

In 1968, the date of its public exhibition, there was, for instance, no Internet,

as we know it, there were no personal computers, no html with which to script

web pages; and programs with which to manipulate natural languages such

as English with relative ease, were only just becoming available. In 1968,

computers had to be installed and accessed on site, monitors were not

available and output was to paper printer86.

86

 I owe this information to Jasia Reichardt, the curator of the show. Personal communication.

 161

Plate 2

Image of installation at Cybernetic Serendipity: photograph courtesy of Professor Brent
MacGregor.

87

Plate 3

Image of installation at Cybernetic Serendipity: photograph courtesy of Professor Brent
MacGregor.

87

 The two images of the haiku displayed at Cybernetic Serendipity seem to show poems
hand copied on to paper and pinned to the wall. Their historical interest outweighs their
slightly poor image quality.

 162

Because of the word processor we are now quite used to computers handling

text. In 1968 this was not so. In 1968 computerised literature was not quite a

decade old. In 1959 – quite separately – there were two initiatives – Theo

Lutz, on the one hand and Brion Gysin on the other (with Ian Summerville, a

Cambridge mathematician) produced what may be the earliest examples of

computerised literature.

That both Lutz and Summerville were scientists is significant. So is the

algorithmic basis of each of their works. Access to computers was limited for

those of a more purely artistic or literary background. (Lutz’s work used a

random number sequence to treat a text by Kafka, whilst Gysin’s was a

permutation of all the combinations of the words of the phrase I AM THAT I

AM; we will see this overtly mathematical option was refused by the

programmers of COMPUTERIZED HAIKU, Margaret Masterman and Robin

McKinnon-Wood; rather they permitted the user to work directly with the

program.)

Masterman and McKinnon-Wood were part of a brilliant generation of

Cambridge scholars that came to prominence after the Second World War.

Their interests were wide, and between them, embraced scientific, literary and

philosophical concerns, and much else besides.

It is important to place COMPUTERIZED HAIKU in the context of a wider

exploration of both cybernetics and natural language computing. Both of these

inform the making of COMPUTERIZED HAIKU.

As I have mentioned, Margaret Masterman and Robert McKinnon-Wood were

part of the Cambridge Language Research Unit. The Unit was involved in the

development of automatic translation techniques for natural languages. Both

Masterman and McKinnon-Wood published articles on the subject. The

techniques behind translation programs would come into use in programming

COMPUTERIZED HAIKU, as we shall see88.

88

 McKinnon-Wood (1971) discusses some of these issues.

 163

Thus COMPUTERIZED HAIKU cannot be viewed in isolation. It was one of

several programs that responded to user input with which McKinnon-Wood

was involved. One of these was SAKI, developed by McKinnon-Wood with his

colleague Professor Gordon Pask. Another is Musicolour (also shown at the

ICA), a light display that interacted with music. SAKI began as a program to

train punch card operators, and later, typists. The program assessed

performance and adapted to improve the operator’s accuracy and speed. It is

the ancestor of contemporary programs to teach typing.

Thus COMPUTERIZED HAIKU must be seen in the context of a

sustained exploration of human-machine interaction, that forms

continuity from practical application through to more purely literary

endeavours. Several scientific and technical strands come together

here: what were then recent developments in computer hardware, new

programming languages and developments in cybernetic theory.

What crucially enabled the realisation of COMPUTERIZED HAIKU was

the availability of a computer language that facilitated the relatively easy

use of a computer to write a text. That language was TRAC. TRAC

stands for “Text Reckoning And Compiling”.

It is important to note TRAC’s significance. Calvin Mooers designed

TRAC in 1964. TRAC, “was designed specifically to handle unstructured

text in an interactive mode, i.e., by a person typing directly into a

computer." (Sammet, 2004). As such it marked a significant advance in

the computer’s usability.

Of course TRAC, and the ‘interactive keyboard’ as Mooers called it, do not

cause the appearance of computerised literature. There was a persistent

interest in increasing both the ease and scope of computer use and this had

continued throughout the 1950’s, and of course carries on today.

 164

Computerised literature, therefore, is a complex development where technical

improvements interplay with other determining elements.

However, to enable a computer to assist in the writing of poetry was a

considerable goal of some cyberneticists. Poetry is in some ways a peculiarly

high status art form89. It is perhaps this high status that has attracted

computer researchers to poetry.

The contribution that TRAC makes is that it is possible to construct a poem as

you go along. This is the aim of Masterman and McKinnon-Wood’s original

work. To explain this will have to describe COMPUTERIZED HAIKU in more

detail. This brief discussion draws upon Masterman’s (op. cit.) essay.

COMPUTERIZED HAIKU comprises a ‘Frame’ or ‘Template’ and a ‘Structured

Thesaurus’. The Template is the fixed form of the poem. It looks like this:

All . . .(1). . . IN THE . . . (2). . . ,

I . . .(3)(4).(5). . . IN THE . . .(6). . .

. . .(7). . .! THE . . .(8). . . HAS . . .(9). . .

The operator of the poem to is expected to make a selection for each

numbered gap in the frame from the structured thesaurus, which consists of

numbered lists of words, to produce a poem like this:

89

 See, for instance, Derrida’s (1981) discussion of its pre-eminence in Kant’s hierarchy of the
arts. “The summit of the highest of the speaking arts is poetry” (p. 18), says Derrida of Kant
on poetry.

 165

ALL BLACK IN THE MIST,

I TRACE THIN BIRDS IN THE DAWN

WHIRR! THE CRANE HAS PASSED.

This is sometimes referred to as a ‘slot’ system or a ‘substitution’ system. It is

not the only method of computerised writing. There are also generative

methods, using Markov chains or recursive grammars. These produce more

complex, less predictable texts. There are also various techniques for

shuffling and cutting up texts. However, the use of substitution systems is still

popular90, as is the haiku form, particularly on the Web, where you can find

many examples of its use.

To assist with composition there is also a Semantic Schema. The schema is

in the form of a diagram91:

Fig 1

All . . .(1). . . IN THE . . . (2). . . ,

I . . .(3)(4).(5). . . IN THE . . .(6). . .

. . .(7). . .! THE . . .(8). . . HAS . . .(9). . .

90

 It has wide and enduring usage. See Murray (1997) for an extended discussion of the many
uses of substitution systems in literature.

91

 This is my representation of a diagram in Masterman’s essay. The lines here marked in
bold were marked with an asterisk in Masterman’s diagram. Where two lines run between
words only one was to be chosen.

 166

This schema is meant to assist the operator whilst she fills in slots in the

templates with words from the thesaurus. The idea is that the arrows “protect

the inexperienced poet from feeding random choices into the machine”

(Masterman p. 179). The schema does this by alerting us to words that bear

upon others. So slot 5, with the most arrows, is the most important

semantically.

This interest in conceptualising and representing semantics is, no doubt,

influenced primarily by Masterman’s work on semantics dating back at least to

her (1961) publication "Semantic message detection for machine translation,

using an interlingua." John Sowa (2002) defines a semantic network thus: a

“semantic network or net is a graphic notation for representing knowledge in

patterns of interconnected nodes and arcs”. I think this is what we can see in

the diagram (fig 4) above.

Masterman was a pioneer in developing the theory of semantic networks: hers

was the first in fact to be called a semantic schema (ibid.) The schema she

developed, in her groundbreaking work on machine translation of languages,

involved the description of concept types and formal patterns of relation.

Whilst such a schema works well for a machine to register connections based

on pattern, later programmers of poetry have not taken up the schema,

perhaps because it is rather unwieldy.

The purpose of the schema, the thesaurus and the template was to assist the

non-poet to write a poem. Masterman did not over-rate the quality of the

poems her program produced. To criticise the program from this point of view

is to miss the point. COMPUTERIZED HAIKU is intended primarily as a

learning tool for poets. That users during Cybernetic Serendipity suggested

improvements and complained about the inadequacy of the available word

choices, for Masterman proved the program worked. (The contemporary

 167

descendant of COMPUTERIZED HAIKU is Ray Kurzweil’s “The Cybernetic

Poet”, although much more complex.92)

The use of an interactive mode in a public display at Cybernetic Serendipity

marks one of the earliest instances of which I am aware. (There were already

interactive computer programs. The first game was Spacewar, 1961. I do not

know, however, any were shown publicly.) It may be noted, the display of

what was essentially a poetry-teaching tool in Cybernetic Serendipity is

evidence of the show’s willingness to look beyond conventional ideas of what

should be shown in an art gallery.93

Interactivity has perhaps become such an overused term and so familiar

experience that it easy to overlook its significance. It was, however, an

important part of the premise of COMPUTERIZED HAIKU that it should

exploit what, as I have mentioned, Mooers called the “interactive typewriter”.

Margaret Masterman, in her essay, explained that the option of batch

processing, that is the complete automation of the program, had been

considered and rejected.

I have, however, pursued Masterman’s suggestion of a random haiku

program. This program regularly violates all of the wise guidance provided to

the human operator of the haiku program – or may make verses (fig 5) that

seem to have contemporary relevance.

92

 "Find out how the RKCP (“Ray Kurzweil’s Cybernetic Poet”) can help you find rhymes,
alliterations, ideas for the next word of your poem (or song), ideas for turns of phrase, and
more”. From http://www.kurzweilcyberart.com/poetry/rkcp_overview.php3

93

 Jasia Reichardt (1971) writes: “Thus Cybernetic Serendipity was not an art exhibition as
such…it was primarily a demonstration of contemporary ideas, acts and objects, linking
cybernetics and the creative process” (p. 14).

http://www.kurzweilcyberart.com/poetry/rkcp_overview.php3

 168

Plate 4

Screen grab of http://www.in-vacua.com/cgi-bin/haiku.pl

McKinnon-Wood with Gordon Pask had been involved in the development

cybernetic theory, particularly with their “Conversation Theory”. (Pask and

McKinnon-Wood were close associates and partners in the company System

Research.) That Conversation Theory was part of the background of

COMPUTERIZED HAIKU is indicated by this remark about COMPUTERIZED

HAIKU that “the machine was to be used in conversational mode”. (This is

from an article credited to the Cambridge Language Research Unit, but

probably authored by McKinnon-Wood, or Margaret Masterman, or both.)

McKinnon-Wood also performed the final lecture, entitled “Talking to

Computers”, to be given in a series at Cybernetic Serendipity (I think

dispelling any doubt about the importance of Conversation Theory, or CT, to

COMPUTERIZED HAIKU.)

CT is an all-embracing attempt to comprehend how we come to understand

through interaction with our environment. The theory has both a loose and a

formal expression. In general terms, all learning situations may be conceived

 169

of as conversation. In strict conversation theory concepts such as

“agreement”, and “consciousness” are formalized processes of

understanding.

CT is part of what is known as “second-order cybernetics”. This is

distinguished from what is considered a more mechanistic earlier phase

where systems are conceived as passive and the observer is more sharply

distinguished from the observed. Second-order cybernetics are characterised

by a recognition that systems themselves are agents in their own right and

interact with us as agents (systems.)

It is such considerations that form the theoretical underpinning of

COMPUTERIZED HAIKU. It is this early venture into interactivity as informed

by CT that may explain the work’s popularity at the time of its exhibition.

However, it must be accepted that, despite the hopes of the programmers of

COMPUTERIZED HAIKU, computers have not really caught on as a learning

aid for poetry. (I can only speculate that those learning to write poetry prefer

to dispense with mechanical assistance.)

4.

How, if at all, is COMPUTERIZED HAIKU to be remembered? To ask this is

also to enquire into the reception of computerised literature in general. The

history of computerised poetry and computerised literature, in fact, is yet to be

written. There are several partial accounts, none of which, to be fair, claim to

be complete. None I know mentions COMPUTERIZED HAIKU.94

How has COMPUTERIZED HAIKU been received by those that do

acknowledge it? Carole McCauley in her (1974) COMPUTERS AND

CREATIVITY claims: “The haiku poems are…quite acceptable” (p.114).

94

 For instance, there is Janet Murray’s (1997) Hamlet on the Holodeck. But this is about
narrative. Aarseth’s (1997) Cybertext. Perspectives on Ergodic Literature is discusses prose
as well as poetry. There is also Charles O. Hartman’s (1996) Virtual Muse, a personal memoir
of poetry and computers.

 170

Ray Kurzweil’s (1990) The Age of Intelligent Machines reproduces several

haiku without criticism. Margaret Boden’s (1992) The Creative Mind, referring

to COMPUTERIZED HAIKU, speaks of “the apparent success of this very

early program” (p. 159). Funkhouser (2003) Poetry, Digital Media and

Cybertext finds, however, “these poems…reveal how generated poems can

be monochromatic in structure when the syntax is unvarying and is

predetermined”.

However, COMPUTERIZED HAIKU remains significant as an early attempt to

make computer poetry. It shows how cybernetic theory, programming

languages and experiments in literature interacted to produce work that was

new and exciting in its time. COMPUTERIZED HAIKU was according to

Masterman (1971), let it be remembered, an “unexpected success” of

Cybernetic Serendipity (p 175).

The other text pieces in the show do not seem to have fared much better than

COMPUTERIZED HAIKU, although several of them are interesting, even

ground-breaking, such as Mendoza’s High Entropy Essays, or Balestrini’s

Tape Mark 1. The best known is probably Edwin Morgan’s Computer’s first

Christmas card. Ironically, this is a simulated computer poem; it is not in fact a

piece of computer writing.

Perhaps Stefan’s rather negative assessment, with which I began this

exploration, is not wholly unfair and great works of computerised literature are

yet to be made: despite the best attempts of ELIZA and Racter95 and their

company.

Nevertheless, it remains relatively early days for cybertext, and this area of

literary production merits greater critical attention and further research. There

are, no doubt, many more developments to be awaited in computerised poetry

and cyber literature generally.

95

 ELIZA, Weizenbaum’s (1976) well-known non-directive therapist. Racter (1984), the
reputed author of The Policeman’s beard is half-constructed.

 171

5. Conclusion

In Conclusion, programming COMPUTERIZED HAIKU was an exercise in

archaeology, but many other things as well. It was the first successful

computer program I wrote. It was my first piece of work to be displayed on the

web.

I have said that my initial interest was to look at a sort of ‘computational’

artwork, in its broadest sense: an artwork in a way divested of its material and

historical ballast: something that aspired to the state of a sort of ‘pure

instruction’ that could be translated between languages, constructed

disassembled and remade. But this attempted act of retrieval has lead me

since to consider precisely all that cannot be regained and which constitutes

the differences between there and then and here and now.

 172

Bibliography

 Note: COMPUTERIZED HAIKU is available at http://www.in-vacua.com/cgi-

bin/haiku.pl

Aarseth, E.J. (1997) Cybertext. Perspectives on Ergodic Literature. Baltimore

and London, The Johns Hopkins University Press.

Aceti, L. (2002) Getting Laid on the Procrustean Bed: Art Practice in the

Digital World, One Man Versus One Pixel <http://www.chart.ac.uk/> (13th

September 2004).

Boden, M. (1992) The Creative Mind. London, Abacus.

Cambridge Language Research Unit, ‘Computerized Haiku’, Theoria to

Theory, Volume 1, Fourth Quarter, July 1967: 378-383.

Derrida, J. ‘ECONOMIMESIS’, DIACRITICS. Volume 11: 3-25.

Funkhouser, C. POETRY DIGITAL MEDIA AND CYBERTEXT

<http://web.njit.edu/~cfunk/SP/hypertext/POETRYDIGITALMEDIACYBERTEX

T2.doc> (10th July 2004).

Hartman, Charles O. (1996) Virtual Muse: Experiments in Computer Poetry.

University Press of New England, Hanover NH.

Kurzweil, R. (1990) The age of intelligent machines. Cambridge, Mass, MIT

Press,

McCauley, Carole S. (1974) COMPUTERS AND CREATIVITY. Praeger, New

York and Washington.

Masterman, M. (1971) ‘Computerized haiku’, in Cybernetics, art and ideas,

(Ed.) Reichardt, J. London, Studio Vista, 175-184.

http://www.in-vacua.com/cgi-bin/haiku.pl
http://www.in-vacua.com/cgi-bin/haiku.pl

 173

McKinnon-Wood, R. (1971) Computer programming for literary laymen in,

Cybernetics, art and ideas, (Ed.) Reichardt, J. London, Studio Vista, 184-191.

Murray, J. H. (1997) Hamlet on the Holodeck. The Future of Narrative in

Cyberspace. Cambridge Mass. MIT.

Racter (1984) The Policeman's beard is half-constructed. Illustrations by Joan

Hall. Introduction by William Chamberlain. New York, Warner

Software/Warner Books.

Reichardt, J. (Ed.) (1968) Cybernetic Serendipity: the computer and the arts,

a Studio International special issue. London, Studio International.

Reichardt, J. (Ed.) (1971) Cybernetics, art and ideas, London, Studio Vista.

Sammet, Jean, E. quoted in, Calvin N. Mooers Papers (CBI 81), Charles

Babbage Institute, University of Minnesota, Minneapolis.

<http://www.cbi.umn.edu/collections/inv/cbi00081.html> (5th September 2004).

Sowa, J. F. (2002) Semantic Networks

<http://www.jfsowa.com/pubs/semnet.htm> (20th September 2004).

Stefans, B. K (2003) Fashionable Noise. On Digital Poetics. Berkeley

California, Atelos.

Turing, A. (1950) Computing Machinery and Intelligence <www.abelard.org/

turpap/turpap.htm>, (9th February 2003).

Turing, A. (1936) ON COMPUTABLE NUMBERS, WITH AN APPLICATION

TO THE ENTSCHEIDUNGSPROBLEM <http://www.abelard.org/turpap2/tp2-

ie.asp> (9th February 2003).

Weizenbaum, J. (1976) Computer power and human reason. San Francisco,

W. H. Freeman and Company.

 174

Appendix: Evidence of Work 2

(This text appears on my web site at: http://www.in-vacua.com/markov_text.html)

Markov Chain Algorithms

(A not very technical explanation).

How the algorithms work.

Markov algorithms do not require either mathematics or computers. It is

possible to perform a Markov algorithm with a pencil and paper (I will discuss

how to do this below). The only other thing required is an input text. There are

mathematically oriented accounts available that discuss such matters. This

one will avoid equations entirely. To illustrate my discussion, I will use this

paragraph.

Markov algorithms work with patterns.

A Markov algorithms determine how likely it is that a word will follow another.

What happens when it is equally likely that one word will follow as another

one? The answer is it tosses a coin, or it makes a random choice, to put it

another way.

http://www.in-vacua.com/markov_text.html

 175

Example: in the first paragraph the word “will” appears three times. It is

followed by

“discuss“

“avoid”

“use”

If a Markov algorithm were to encounter the word “will” in the above, it could

randomly choose one of these three words available to it as being equally

probable. It might then take for instance the word “discuss” and follow it up

with either “how” or “such”. It continues to do this each time, taking a word,

finding one to follow it, taking the last word found and then adding another. As

you see, it deals with one pair of words at a time. It adds a word and this

makes a new pair. (It is possible for the algorithm to use threes and fours or

more, but pairs seem to produce more interesting results).

With short texts, like the first paragraph, it doesn’t have many options

available to it as most of the words appear only once. But with longer texts it

can produce many variations.

The texts it produces seem often quite like the source text. Frequently they

are also rather strange sounding.

One of the things about a Markov chain algorithm is that it treats punctuation

as part of a word. So, it would treat “word.” as a word, if you see what I mean.

This is quite useful as frequently it manages to punctuate plausibly by shifting

letters and punctuation marks together. Sometimes it does not though and

can put punctuation marks in funny places.

 176

Markov algorithms have often been used to produce texts that are both

nonsensical and rather plausible.

A quite well known example is “Mark V. Shaney”. He is discussed in:

Kernighan, Brian W and Pike, R. (1999) The Practice of Programming.

Reading, MA, Addison-Wesley.

Apparently he confused people who thought he was ‘real’. He’s still out there

living on the web somewhere.

A Few Observations

My own use of Kernighan and Pike’s algorithm differs quite a bit in that I am

not really interested in hoodwinking. The text that my Markov Generator uses

is my own research into text generation. I was trying to generate a text that

was a text generation text…

A slightly more technical point is that Markov algorithms tend to always start

with the same word. This is repetitious of them after a while. So I run my text

through a ‘shuffle’ first. This stops it doing that.

Markov algorithms are only as syntactical – at best – as the texts they use. If

the text that is fed in is only one word repeated a lot, the algorithm will only

produce the same text. If the text consists of a jumble of words appearing with

equal frequency, then the text made is not likely to be any more like English

than the input. (Obviously in English for example we choose words with

slightly more care).

 177

In other words, Markov algorithms just do a calculation. They cannot produce

sentences for themselves. For that you need something like a recursive

grammar (article to follow). These should always produce grammatical

sentences as long as they are written that way. They probably produce

nonsense too, however. See, Bulhak, A.C. (1996) On the Simulation of

Postmodernism and Mental Debility using Recursive Transition Networks.

Natural Language Programming, tries to overcome this. But that is the subject

of another discussion.

Lastly, Markov algorithms have a very short memory. That is to say, they

produce a text based on their count of word frequencies. Each time the

algorithm is run, it starts anew. For this reason Markov processes are called

'finite state machines': each state is determined by the one previous. A

Markov algorithm only looks through a text on a pair by word pair basis.

(although it can handle longer sequences). If you want something that seems

to live and grow, you might be interested in artificial life programming.

Shannon’s Pen and Paper Markov Method

Shannon is the founder of Information Theory. He wrote a (1948) paper, ‘A

Mathematical Theory of Communication’ where he explains the basic

technique (although this version is a little different).

Choose a pair of words at random from a novel. Read through the novel until

the second of the words is encountered again. Write down the word that

follows it. Carry on until you hit the word you just wrote down. When you find it

write down the word that follows that word. Continue until you make

something interesting or exhaustion sets in.

 178

This is based on a now obscure text by J. R. Pierce describing Shannon’s

techniques. See ‘A chance for art’, in Cybernetics, art and ideas, (1971) Jasia

Reichardt (Ed.)., London, Studio Vista.

The method may produce mostly garbage with occasional more interesting

passages. It’s also very slow. Easier to get a computer to do it?

Wayne Clements 01/05

 179

Appendix: Evidence of Work 3

[Submitted to ‘Mainframe’, a book about the early years of computing and the arts,

edited by Douglas Kahn and Benjamin Buchloh.]

The Ghosts of Cybernetics

The proposed paper concentrates on the ‘Computer poems and texts’

installation at Cybernetic Serendipity (ICA Gallery, London, 1968). It builds

upon a presentation previously given by the author at CHArt 200496.

…

In his 1967 lecture, Cybernetics and Ghosts, Italo Calvino looked forward to

the appearance of a “writing machine”. For Calvino this machine was defined,

a la Alan Turing, as a procedure such as might, or might not, be entrusted to a

(real) computer to carry out. Calvino gives the example of Queneau’s Cent

Mille Milliards de poemes: a “rudimentary machine for making sonnets, each

one different from the last” (p. 12).

In fact, by the time of Calvino’s writing several similar attempts had been

made to simulate writing machines with computers. A number of these were

96

 Computer Poetry’s Neglected Debut. The presentation included a live projection of a new
version programmed by the author (http://www.in-vacua.com/cgi-bin/haiku.pl). This will be
followed in due course by the publication of the full paper. There is an abstract at,
http://www.chart.ac.uk/chart2004-abstracts/clements.html.

http://www.in-vacua.com/cgi-bin/haiku.pl
http://www.chart.ac.uk/chart2004-abstracts/clements.html

 180

brought together in what was an impressive, although not comprehensive

survey, in Cybernetic Serendipity.

One of these works, The House of Dust by Alison Knowles and James

Tenney, is already featured in Mainframe Computing. My proposed paper

aims to extend this discussion, placing the works featured in Cybernetic

Serendipity in the context of a sustained attempt to program ‘writing

machines’ stretching back over the preceding decade. This project may be

dated from 1959, when in two separate but contemporaneous initiatives, Theo

Lutz, and Brion Gysin and Ian Somerville, programmed the first computer

poems.

The works in Cybernetic Serendipity are notable for several reasons. There is

the international aspect of the exhibition (mirrored by other displays at the

ICA), with work from the USA, Italy, France and Britain. Plainly, there were

many similar and contemporaneous developments occurring in several

different countries.

Also characteristic of the show is the prominence of scientists, sometimes, but

not always, working with artists and writers. From this may be construed the

difficulty of artists to command either the programming skills or access to the

hardware necessary to make computerised work. (Thus, participants such as

Masterman and McKinnon Wood were computational linguists from

Cambridge, and Mendoza a physicist from University College North Wales).

However, what is perhaps most notable is how Cybernetic Serendipity

comprehensively maps out progress in this area, and how relatively little

development there has been since.

For instance, Jean Baudot’s La Machine à Écrire was an early (1964) text

generation program. Masterman and McKinnon Wood’s COMPUTERIZED

HAIKU may be accorded the honour, on the basis of my research, of being

the first work to take advantage of the “interactive keyboard” to be publicly

exhibited. Mendoza’s High-Entropy Essays anticipate the Postmodernism

 181

Generator’s much more famous – and it may be granted – more successful

attempt to spoof pseudo-science.

…

It is my conclusion that this relative lack of progress since 1968 has led to

these, and other early initiatives, being rather overlooked by later scholarship.

Despite Calvino’s hopes of a machine that would write poems and novels

“that follow all the rules” (ibid.) that might be able also to rebel and stage a

modernist revolt against its own classicism, computerised literature has not

developed far beyond what was mapped out for it in Cybernetic Serendipity.

The ghosts of cybernetics linger over this epoch. These are the ghosts, and

not the only ones, of the hopes of that time of optimism that continue to

trouble the present.

Bibliography

Calvino, I. (1997) ‘Cybernetics and Ghosts’, in The Literature Machine,

Essays, trans. Creagh, P. London, Vintage, 3-28.

Reichardt, J. (Ed.). (1968) Cybernetic Serendipity: the computer and the arts,

a Studio International special issue. London, Studio International.

Reichardt, J. (Ed.). (1971) Cybernetics, art and ideas, London, Studio Vista.

 182

Appendix: Evidence of Work 4: Programs

In this Appendix I present several programs. These works are chosen to be representative of the in-

vacua.com website. I have not tried to tidy them. They retain evidence of working.

…

1. haiku.pl

Note: the program for COMPUTERIZED HAIKU. This program handles user created

haiku. Random and automated versions are made by other programs.

#!/usr/bin/perl -Tw

/home/sites/www.in-vacua.com/web/cgi-bin/haiku.pl -w

use strict;

use CGI qw(:all);

use CGI::Carp qw(fatalsToBrowser);

my $base="/home/sites/www.in-vacua.com/web/base.html";

my @haikus=qw(s1 s2 s3 s4 s5 s6 s7 s8 s9 name line1 line2 line3);

my ($s1, $s2, $s3, $s4, $s5, $s6, $s7, $s8, $s9);

my ($line1, $line2, $line3, $name);

print header;

 if(! param) {

 page_one();

} elsif (defined param('pageone')) {

 page_two();

} elsif (defined param('pagetwo')) { #creates later pages

 page_three(); #ie when p1 done, p2 made etc

} else {

 haiku_complete();

}

 183

sub page_one {

 print<<END_PAGE_ONE;

<html>

<head>

 <title>COMPUTERIZED HAIKU</title> <meta name=\"keywords\"

content=\"writing machines, text, random, computerised literature, algorithmic,

computer poetry, performance scripts, instructions, splice, cut-up\">

<meta name=\"description\" content=\"in-vacua.com features text machines, software

art, and text generation and manipulation programs for users on the internet\">

 <script language=\"JavaScript\">

 function createTarget(t)

{ window.open(\"\", t, \"width=650,height=400, left=75,top=0, scrollbars=yes,

toolbar=yes, menubar=yes, resizable=yes\");

 return true;}

 </script>

</head>

<body

link=\"87CEFF\"

VLINK=\"orange\"

 bgcolor="black" text="white">

<h1 style="font-family: helvetica,arial,sans-serif;">

<center>COMPUTERIZED HAIKU</center>

</h1>

<br style="font-family: helvetica,arial,sans-serif;">

<p style="font-family: helvetica,arial,sans-serif;"></p>

<small>

<a href= \"http://www.in-vacua.com/haiku.html\" onclick=\"return

createTarget(this.target)\"

 target=\"window1\">

Computerized

Haiku was shown in the first major exhibition of computer art,

'Cybernetic Serendipity' (ICA, London 1968). See also <a href= \"http://www.in-

vacua.com/cgi-bin/mendoza.pl\">High-Entropy-Essays.
<p>

Originally programmed by Margaret Masterman
 and Robin McKinnon-

Wood.

I gave a presentation about it at 'CHArt' 2004 (<i><u>Computer Poetry's

Neglected Debut</u></i>).

 There is an Abstract <a href=\"http://www.chart.ac.uk/chart2004-

abstracts/clements.html\" onclick=\"return createTarget(this.target)\"

 target=\"window2\">here

 184

<p>

 This version programmed

2003. Wayne Clements, in-vacua.com.

</small>
<p>

<hr>

<br style="font-family: helvetica,arial,sans-serif;">

<p style="font-family: helvetica,arial,sans-serif;"></p>

<p style="font-family: helvetica,arial,sans-serif;"></p><h3 style="font-family:

helvetica,arial,sans-serif;">Choose a word from

each of the lists to make a haiku.</h3>

<br style="font-family: helvetica,arial,sans-serif;">

It is suggested

you select words that go together, as in this example (the words in brackets are

fixed,<br style="font-family: helvetica,arial,sans-serif;">

 the others are

chosen from the lists):<br style="font-family: helvetica,arial,sans-serif;">

<br style="font-family: helvetica,arial,sans-serif;">

 [ALL] THIN [IN

THE] MIST,<br style="font-family: helvetica,arial,sans-serif;">

[I] TRACE BLACK

BIRDS [IN THE] DAWN.<br style="font-family: helvetica,arial,sans-serif;">

WHIRR! [THE]

CRANE [HAS] PASSED.

<br style="font-family: helvetica,arial,sans-serif;">

<p style="font-family: helvetica,arial,sans-serif;">

</p>

<form>

 <select name="s1"/><option value="WHITE"/>WHITE

 </option/><option value="BLUE">BLUE

 </option><option value="RED">RED

 </option><option value="BLACK">BLACK

 </option><option value="GREY">GREY

 </option><option value="GREEN">GREEN

 </option><option value="BROWN">BROWN

 </option><option value="BRIGHT">BRIGHT

 </option><option value="PURE">PURE

 </option><option value="CURVED">CURVED

 </option><option value="CROWNED">CROWNED

 </option><option value="STARRED">STARRED

 </option></select>

 <select name="s2" size="1"><option value="BUDS"/>BUDS

 </option/><option value="TWIGS">TWIGS

 </option><option value="LEAVES">LEAVES

 </option><option value="HILLS">HILLS

 185

 </option><option value="PEAKS">PEAKS

 </option><option value="SNOW">SNOW

 </option><option value="ICE">ICE

 </option><option value="SUN">SUN

 </option><option value="RAIN">RAIN

 </option><option value="CLOUD">CLOUD

 </option><option value="SKY">SKY

 </option><option value="DAWN">DAWN

 </option><option value="DUSK">DUSK

 </option><option value="MIST">MIST

 </option><option value="FOG">FOG

 </option><option value="SPRING">SPRING

 </option><option value="HEAT">HEAT

 </option><option value="COLD">COLD

 </option></select>

 <select name="s3" size="1"><option value="SEE">SEE

 </option><option value="TRACE">TRACE

 </option><option value="GLIMPSE">GLIMPSE

 </option><option value="FLASH">FLASH

 </option><option value="SMELL">DITCH

 </option><option value="TASTE">TASTE

 </option><option value="HEAR">HEAR

 </option><option value="SEIZE">SEIZE

 </option></select>

 <select name="s4" size="1"><option value="SNOW">SNOW

 </option><option value="TALL">TALL

 </option><option value="PALE">PALE

 </option><option value="DARK">DARK

 </option><option value="FAINT">FAINT

 </option><option value="WHITE">WHITE

 </option><option value="CLEAR">CLEAR

 </option><option value="RED">RED

 </option><option value="BLUE">BLUE

 </option><option value="GREEN">GREEN

 </option><option value="GREY">GREY

 </option><option value="BLACK">BLACK

 </option><option value="ROUND">ROUND

 </option><option value="SQUARE">SQUARE

 </option><option value="STRAIGHT">STRAIGHT

 </option><option value="CURVED">CURVED

 </option><option value="SLIM">SLIM

 </option><option value="FAT">FAT

 </option><option value="BURST">BURST

 </option><option value="THIN">THIN

 </option><option value="BRIGHT">BRIGHT

 </option></select>

 <select name="s5" size="1"><option value="TREES">TREES

 </option><option value="PEAKS">PEAKS

 186

 </option><option value="HILLS">HILLS

 </option><option value="STREAMS">STREAMS

 </option><option value="BIRDS">BIRDS

 </option><option value="SPECKS">SPECKS

 </option><option value="ARCS">ARCS

 </option><option value="GRASS">GRASS

 </option><option value="STEMS">STEMS

 </option><option value="SHEEP">SHEEP

 </option><option value="COWS">COWS

 </option><option value="DEER">DEER

 </option><option value="STARS">STARS

 </option><option value="CLOUDS">CLOUDS

 </option><option value="FLOWERS">FLOWERS

 </option><option value="BUDS">BUDS

 </option><option value="LEAVES">LEAVES

 </option><option value="TREES">TREES

 </option><option value="POOLS">POOLS

 </option><option value="DROPS">DROPS

 </option><option value="STONES">STONES

 </option><option value="BELLS">BELLS

 </option><option value="TRAILS">TRAILS

 </option></select>

 <select name="s6" size="1"><option value="SPRING">SPRING

 </option><option value="FALL">FALL

 </option><option value="COLD">COLD

 </option><option value="HEAT">HEAT

 </option><option value="SUN">SUN

 </option><option value="SHADE">SHADE

 </option><option value="DAWN">DAWN

 </option><option value="DUSK">DUSK

 </option><option value="DAY">DAY

 </option><option value="NIGHT">NIGHT

 </option><option value="MIST">MIST

 </option><option value="TREES">TREES

 </option><option value="WOODS">WOODS

 </option><option value="HILLS">HILLS

 </option><option value="POOLS">POOLS

 </option></select>

 <select name="s7" size="1"><option value="BANG">BANG

 </option><option value="HUSH">HUSH

 </option><option value="SWISH">SWISH

 </option><option value="FFTTT">FFTTT

 </option><option value="WHIZZ">WHIZZ

 </option><option value="FLICK">FLICK

 </option><option value="SHOO">SHOO

 </option><option value="GRRR">GRRR

 </option><option value="WHIRR">WHIRR

 </option><option value="LOOK">LOOK

 187

 </option><option value="CRASH">CRASH

 </option></select>

 <select name="s8" size="1"><option value="SUN">SUN

 </option><option value="MOON">MOON

 </option><option value="STAR">STAR

 </option><option value="CLOUD">CLOUD

 </option><option value="STORM">STORM

 </option><option value="STREAK">STREAK

 </option><option value="TREE">TREE

 </option><option value="FLOWER">FLOWER

 </option><option value="BUD">BUD

 </option><option value="LEAF">LEAF

 </option><option value="CHILD">CHILD

 </option><option value="CRANE">CRANE

 </option><option value="BIRD">BIRD

 </option><option value="PLANE">PLANE

 </option><option value="MOTH">MOTH

 </option></select>

 <select name="s9" size="1"><option value="FLIT">FLIT

 </option><option value="FLED">FLED

 </option><option value="DIMMED">DIMMED

 </option><option value="CRACKED">CRACKED

 </option><option value="PASSED">PASSED

 </option><option value="SHRUNK">SHRUNK

 </option><option value="SMASHED">SMASHED

 </option><option value="BLOWN">BLOWN

 </option><option value="SPRUNG">SPRUNG

 </option><option value="CRASHED">CRASHED

 </option><option value="GONE">GONE

 </option><option value="FOGGED">FOGGED

 </option><option value="BURST">BURST

 </option></select>

 <p>

 </p>

 <p><input type="submit" name="pageone" value="Write your Haiku">

 <input type="reset" value="reset">

 </p></form><p>
In 1968

Haiku were pinned up on the Gallery wall.

 You can have your Haiku placed in an archive. To preview this archive click

 here: archive

 <p>

 </p>

 <hr>

 <p>

 </p>

 188

 <h3><p style="font-family: helvetica,arial,sans-serif;">A Random Haiku

Machine.</h3>

<p style="font-family: helvetica,arial,sans-serif;">

Masterman speculated about a program to produce these haiku randomly. If

you

press the button this

is what happens. However, some of the combinations can be a little

peculiar.

Perhaps she would have revised it.

 <p></p>

 <form action="/cgi-bin/mman2.pl" method="post">

 <input type="submit" value="Random Haiku"> </form>

 <p>
 <p style="font-family: helvetica,arial,sans-serif;"><big><big>There's an

automated version >here

 </p>
</big>

</form>

<p> Home</p>

</body></html>

END_PAGE_ONE

}

#########

sub repeat_hidden {

foreach my $poems (@haikus){

 if (defined param($poems)) {

 print "<input type=hidden";

 print " name=\"$poems\" ";

 print " value=\"", param($poems),"\"/>\n";

 }

 }

 }

sub page_two {

my $s1=param('s1');

my $s2=param('s2');

my $s3=param('s3');

my $s4=param('s4');

my $s5=param('s5');

my $s6=param('s6');

 189

my $s7=param('s7');

my $s8=param('s8');

my $s9=param('s9');

my $line1=param('line1');

my $line2=param('line2');

my $line3=param('line3');

$line1 = join '', (' ALL ', $s1, ' IN THE ', $s2, ', ');

$line2 = join '', (' I ', $s3, ' ', $s4, ' ', $s5, ' IN THE ', $s6, '. ');

$line3 = join '', ($s7, '! THE ', $s8, ' HAS ', $s9, '. ');

 print<<END_PAGE_TWO;

<p><h4>your haiku:</h4>

<p>
<p><h2>

<form>

$line1<input type="hidden" name="line1" value="$line1">

$line2<input type="hidden" name="line2" value="$line2">

$line3<input type="hidden" name="line3" value="$line3"></h2>

<p>
<p>

 <h4>if you'd like, your haiku can be entered in the <a href="http://www.in-

vacua.com/base.html">visitor archive by using the button below
<p>

or if you prefer, please

return

</h4>

</p>

<input type="submit" name="pagetwo" value="to archive"/>

END_PAGE_TWO

 repeat_hidden();

 print "</form>";

}

##########

sub page_three {

 print<<END_PAGE_THREE;

<form><p>

 190

<h4>

Please enter a name to go with your poem. Or you can leave the field blank.

Your haiku will be displayed on the web site.

<input type="text" name="name" size="20"></textarea>

Press send,

<p><input type="submit" name="pagethree" value="Send"/>

END_PAGE_THREE

 repeat_hidden();

 print "</form>";

 }

#########

sub save {

open(FILE, ">>$base") || die "Cannot open $base: $!";

flock (FILE, 2) || Error('lock', 'file');

my $poems1=param('line1');

my $poems2=param('line2');

my $poems3=param('line3');

my $name=param('name');

print FILE "$poems1\n";

print FILE "
$poems2";

print FILE "
$poems3";

print FILE "

Name: $name

";

}

close(FILE);

sub haiku_complete {

save();

 print<<END_HAIKU_COMPLETE;

Your haiku has been placed in the archive

click to view all the poems in the collection

END_HAIKU_COMPLETE

repeat_hidden();

 print "</form>";

 }

 191

2. ono1.pl

Note: this is the program for the work titled Ono Generator.

#!/usr/bin/perl -Tw

#/home/sites/www.in-vacua.com/web/cgi-bin/ono.pl

use strict;

use CGI ':standard';

use CGI::Carp qw(fatalsToBrowser);

print "Content-type: text/html\n\n";

my (@s10, @s20, @s30, @s40, @s50, @s60, @s70, @s80, @s90, @s010,

@keywords, @select);

my ($s10, $s20, $s30, $s40, $s50, $s60, $s70, $s80, $s90, $s01);

my ($s1, $s2, $s3, $s4, $s5, $s6, $s7, $s8, $s9, $s010);

my ($rand1, $rand2);

my ($line1, $line2, $line3, $line4, $line5, $line5a, $line6, $line7, $line8, $line9,

$line10, $line11);

srand;

#array holds lines to make a random select from

@s10 = ("when a hole is drilled ", "where there is wind ", "where you can see the sky

", "where the west light comes in ", "once a year ", "in a glass tank ", "on a snowy

evening ", "in the town square ", "from the beginning to the end ", "when a hole is

drilled ", "at any time ", "for any length of time ", "every morning ", "at an address

arbitrarily chosen ", "at twenty addresses ", "at an arbitrary point ", "in the garden ",

"on the night of the full moon ", "at dawn ", "from 1AM ");

 @s20 = ("a space ", "a fictional name ", "a shadow ", "the whole thing ", "a design ",

"a numeral ", "a roman letter ", "a circle ", "a number ", "a hole ", "the morning light

", "a marker ");

 @s30 = ("a bag ", "a broken sowing machine ", "a microscope ", "a stone ", "a hair ",

"a piece of glass ", "a piece of wood ", "a piece of metal ", "the sky ", "a canvas ", "a

vine ", "your hand ", "the garbage ");

@s40 = ("telephone numbers ", "grasshoppers ", "ants ", "singing insects ", "figures ",

"shapes ", "old paintings ", "photographs ", "blank canvases ", "two holes ");

 @s50 = ("until ", "till ", "where ", "when ", "to see if ");

 @s60 = ("try ", "shake " , "receive ", "converse with ", "enlarge ", "change ", "list ",

"see ", "use ", "sell ", "send ", "collect ", "select ", "mix in your head ", "write on ",

"hang ", "drill ", "bury ", "place ", "cut ", "cut out ", "dismember ");

 @s70 =("a shadow ", "cracked ", "red ", "black ", "almost invisible ", "finished ",

"covered with nails ", "dyed thoroughly in rose ", "different ", "gone ");

 @s80 = ("observe ", "imagine ", "remember ", "see ");

 192

 @s90 = ("the size you prefer ", "until the whole thing is gone ", "that you

associate with it ", "to see if the skies are different ", "that come to mind ", "the size

you prefer ", "chosen arbitrarily ", "to let the light go through ", "to your taste ", "to

paint black ", "printed or otherwise ", "that you like ", "that you remember ");

$s1 = $s10[int(rand(@s10))];

 $s2 = $s20[int(rand(@s20))];

 $s3 = $s30[int(rand(@s30))];

 $s4 = $s40[int(rand(@s40))];

 $s5 = $s50[int(rand(@s50))];

 $s6 = $s60[int(rand(@s60))];

 $s7 = $s70[int(rand(@s70))];

 $s8 = $s80[int(rand(@s80))];

 $s9 = $s90[int(rand(@s90))];

 $s01 = $s010[int(rand(@s010))];

$line1 = join '', ($s6, $s3, "\n");

 $line2 = join '', ($s3, "is ", $s2, $s1, " - ", $s8, "\n");

 $line3 = join '', ($s3, $s1, "is to be ", $s2, "\n");

 $line4 = join '', ($s1, "there is ", $s2, "\n");

 $line5 = join '', ("if ", $s1, $s2, "is ", $s7, ' - ', $s8, $s3, "\n");

 $line5a = join '', ($s1, $s8, $s4, "\n");

 $line6 = join '', ($s6, $s2, "for a visitor to ", $s8, "\n");

 $line7 = join '', ($s8, $s3, "that is ", $s7, "\n");

 $line8 = join '', ($s1, "there is ", $s2, " - ", $s8, $s3, "\n");

 $line9 = join '', ("for a visitor: ", $s4, "that are ", $s7,', ', $s1, "\n");

 $line10 = join '', ($s6, $s4, $s5, $s4, "are ", $s7, "\n");

$line11 = join '', ($s6, $s4, $s9, "\n");

$rand2 = int(rand 2) + 1; #creates random no. for if else.

if ($rand2 == 1) {

 push @keywords, $line1, $line2, $line3, $line4, $line5, $line5a

#selects a line group as no. == 1 or 2

}

else {

 push @keywords, $line6, $line7, $line8, $line9, $line10, $line11

}

$rand1 = int(rand 4) + 1; #a random number is chosen...not 0...size adjustable

my %seen = ();

$seen{int(rand(@keywords))}++ while scalar keys %seen<$rand1;

#a random group of lines will be chosen

 #AND of a random size

 193

@select = @keywords[keys %seen];

print "<html><head><title>ONO GENERATOR</title>

 <script language=\"JavaScript\">

<!--hide

 function createTarget(t)

{ window.open(\"\", t, \"width=650,height=400, left=75,top=0, scrollbars=yes,

toolbar=yes, menubar=yes, resizable=yes\");

 return true;}

//-->

 </script>

<meta name=\"keywords\" content=\"text machines, text, random, computerised

literature, algorithmic, computer poetry, performance scripts, instructions\">

<meta name=\"description\" content=\"in-vacua.com features writing machines,

software art, and text generation and manipulation programs for users on the

internet\">

</head>

<body

link=87CEFF

VLINK=BCEE68

 bgcolor=\"black\" text=\"white\">

<div align=\"center\"><big style=\"font-family: arial;\"><big><big><big><span

 style=\"font-weight: bold;\">ONO GENERATOR</big></big></big></big>

<p>
<p>

<p>

<p>

<center>

<form><input type=\"submit\" value=\"@select\" action onSubmit=\"http://www.in-

vacua.com/ono.pl\"></center>

<p>

<p>

<p>
<p>
<p>
<p>

<hr style=\"width: 100%; height: 2px;\"><p><div align=\"left\">
<p>

 194

<div align=\"left\"> <big><big> press the GREY BUTTON

ABOVE to make the <a href=\"/ono_text.html\" onclick=\"return

createTarget(this.target)\"

 target=\"window1\" style=\"color: rgb(124; 252; 0);\"> Ono Generator

 write

<p>Home";

 195

3. generator.pl

Note: the program for Markov Generator.

#!/usr/bin/perl - wT

/home/sites/www.in-vacua.com/web/cgi-bin/generator.pl -w

#shuffles 1st, then markovises. the finished prog

use strict;

use CGI ':standard';

use CGI::Carp qw(fatalsToBrowser);

print "Content-type: text/html\n\n";

my ($MAXGEN, $NONWORD, $w1, $w2, $suf, $statetab, $r, $t, $i, %statetab,

@array);

Copyright (C) 1999 Lucent Technologies

Excerpted from 'The Practice of Programming'

by Brian W. Kernighan and Rob Pike

markov.pl: markov chain algorithm for 2-word prefixes

open(FILE1, "/home/sites/www.in-vacua.com/web/cgi-bin/chapter1.txt")|| die;

open(FILE2, ">/home/sites/www.in-vacua.com/web/cgi-bin/chapter2.txt")|| die;

@array = <FILE1>;

shuffle(\@array);

my $draw= join ' ', @array;

print FILE2 $draw;

close FILE1;

close FILE2;

open(FILE2, "/home/sites/www.in-vacua.com/web/cgi-bin/chapter2.txt")|| die;

srand;

my $rand = int(rand 60) + 2;

my $html = "<html><head>

<script>

var limit=\"0:$rand\"

 196

if (document.images){

var parselimit=limit.split(\":\")

parselimit=parselimit[0]*60+parselimit[1]*1

}

function beginrefresh(){

if (!document.images)

return

if (parselimit==1)

window.location.reload()

else{

parselimit-=1

curmin=Math.floor(parselimit/60)

cursec=parselimit%60

if (curmin!=0)

curtime=curmin+\" minutes and \"+cursec+\" seconds left until page refresh\"

else

curtime=cursec+\" seconds\"

window.status=curtime

setTimeout(\"beginrefresh()\",2000)

}

}

window.onload=beginrefresh

//-->

</script>

<title>markov text</title>

</head>

<body bgcolor=black lang=EN-GB link=\"#87ceff\" vlink=\"#bcee68\"

bgcolor=\"black\" text=\"white\">

home<P>
<P><P>

<center>";

$MAXGEN = 10000;

$NONWORD = "\n";

$w1 = $w2 = $NONWORD; # initial state

while (<FILE2>) { # read each line of input

 foreach (split) {

 push(@{$statetab{$w1}{$w2}}, $_);

 ($w1, $w2) = ($w2, $_); # multiple assignment

 }

}

push(@{$statetab{$w1}{$w2}}, $NONWORD); # add tail

print $html;

 197

$w1 = $w2 = $NONWORD;

for ($i = 0; $i < $MAXGEN; $i++) {

 $suf = $statetab{$w1}{$w2}; # array reference

 $r = int(rand @$suf); # @$suf is number of elements

 exit if (($t = $suf->[$r]) eq $NONWORD);

print ' '. $t; #concatenation with white space, W

 ($w1, $w2) = ($w2, $t); # advance chain

}

fisher yates shuffle

sub shuffle {

my($array) = shift();

for (my $i = @$array; --$i;) {

my($j) = int(rand($i + 1));

next() if ($i == $j);

@$array[$i, $j] = @$array[$j, $i];

}

} #EOSub

 198

4. alt_img_tate.pl

#!/usr/bin/perl -wT

alt 3 will open web page. strip out alt tags. print tags to file. close.

it will then select and shuffle *some* of the lines.

this one will delete white space using grep and select one alt tag and print.

use strict;

use HTML::Tree;

use LWP::Simple;

use CGI::Carp qw(fatalsToBrowser);

my $html2 = '';

my $page;

my @page;

my @HTTP = '';

my $HTTP = '';

srand;

my $ALT_FILE_NEW = 'ALT_FILE_NEW.txt';

my $alt_tate = 'alt_tate.txt';

open(ALT_TATE, "$alt_tate") or die "Can't open file: $!";

flock (ALT_TATE, 2) || Error('lock', 'file');

 #opens file of addresses

 @HTTP = <ALT_TATE>; #puts address file into a array

close(ALT_TATE);

my $new = $HTTP[int(rand(@HTTP))]; #chooses one from array

my $Html = get($new); #opens new web page

print "Content-type: text/html\n\n";

open(ALT_FILE_NEW, ">$ALT_FILE_NEW") or die "Can't open file: $!";

#opens file to write to

flock (ALT_FILE_NEW, 2) || Error('lock', 'file');

 199

 my %AltTexts;

 while($Html=~/(<IMG\b.*?>)/isg)

 { my $ImgElement=$1;

 # Find SRC tag

 $ImgElement=~/SRC\s*=\s*([\"\'])(.*?)\1/is;

 my $Src=$2;

 #print " $Src\n";

 # Find ALT tag & store text

 if($ImgElement=~/ALT\s*=\s*([\"\'])(.*?)\1/is)

 { $AltTexts{$Src}=$2;}

 else

 { # No ALT found so give it default text if none already found

 unless(exists($AltTexts{$Src}))

 { $AltTexts{$Src}='NO_ALT_TAG!';}}}

 # Write extracted data to a file

 foreach my $SrcPath (sort keys %AltTexts)

 { print ALT_FILE_NEW "$AltTexts{$SrcPath}\n\n";} #writes to file

close(ALT_FILE_NEW);

open(ALT_FILE_NEW, "$ALT_FILE_NEW") or die "Can't open file: $!";

flock (ALT_FILE_NEW, 2) || Error('lock', 'file');

my $choice = '';

my @array = <ALT_FILE_NEW>;

close(ALT_FILE_NEW);

my @words = grep /[A-Z_a-z]/, @array; #gets alts with words only

$choice = $words[int(rand(@words))]; #chooses one

if (! $choice){

$html2 = "<html><head>

<script type=text/javascript>

// The time out value is set to be X (or X seconds)

setTimeout(' document.location=document.location' ,10000);

col=255;

function fade() { document.getElementById(\"fade\").style.color=\"rgb(\" + col + \",\"

+ col + \",\" + col + \")\"; col-=5; if(col>0) setTimeout('fade()', 200); }

</script>

</head>

 200

<body onLoad=\"fade()\">

<p>

<center>

PLEASE_WAIT...</center>

<p>

<p>
<p>
<p>
<\html>

";

}

else

{

 $html2 = "<html><head>

<script type=text/javascript>

// The time out value is set to be X (or X seconds)

setTimeout(' document.location=document.location' ,10000);

col=255;

function fade() { document.getElementById(\"fade\").style.color=\"rgb(\" + col + \",\"

+ col + \",\" + col + \")\"; col-=5; if(col>0) setTimeout('fade()', 200); }

</script>

<body onLoad=\"fade()\">

<p>

<center>

$choice

<p>

<p>
<p>
<p>

";

}

print $html2;

 201

5. Noumena1.pl

[Note. I wish to acknowledge that the programming of Noumena1.pl is largely the

work of Simon at www.hitherto.net]

#!/usr/bin/perl -wT

/home/sites/www.in-vacua.com/web/cgi-bin/Noumena1.pl -w

use CGI::Carp qw(fatalsToBrowser);

use strict;

use CGI ':standard';

use lib '/.users/27/inv838/Template';

use LWP::Simple;

use HTML::Parser;

use vars qw($html);

my $content;

Configurable variables for the script

my %templates = (text => "text_output.html",

 url => "url_output.html");

Initialise a new CGI object for parameter handling, etc.

my $q = CGI->new;

Check to see if we have any input from the user. If so,

we go to process it. If not, we'll return a blank form

if ($q->param('text')) {

 my $text = &process_text($q->param('text'));

 &output_template('text',$text);

} elsif ($q->param('url')) {

 my $text = &process_url($q->param('url'));

} else {

 print $q->redirect("/noumena.html");

}

Subroutine Definitions

process_url: strip non-punctuation from html docs (harder)

sub process_url {

 my ($url) = @_;

 202

 my $content = get($url);

 die "Couldn't get it!" unless defined $content;

 # Slightly ugly kludging to sort out internal document links

 # on sites that don't fully qualify (damn them all)

 if (!($url =~ m!^http://!)) {

 $url ="http://".$url;

 }

 $url =~ m!(http://(.*))/!;

 my $baseurl=$1 || $url;

 $content =~ s!href="/(.*)"!href="$baseurl/$1"!ig;

 $content =~ s!rel="/(.*)"!rel="$baseurl/$1"!ig;

 $content =~ s!src="/(.*)"!src="$baseurl/$1"!ig;

 # HTML::Parser is slightly odd - it uses a callback interface which throws

 # things back into this namespace.

 HTML::Parser->new(api_version => 3,

 handlers => [start => [\&_html_parser_tag, "text"],

 end => [\&_html_parser_tag, "text"],

 text => [\&_html_parser_text, "dtext"]],

 marked_sections => 1,)->parse($content);

 print $q->header;

 print $html;

}

html_parser_text: handler to tell HTML::Parser what to do with text sections

sub _html_parser_text {

 my ($text) = @_;

 $text =~ s!\w! !g;

 $html .= $text;

}

html_parser_tag: handler to pass html tags unmolested back to HTML::Parser

sub _html_parser_tag {

 my ($text) = @_;

 $html .= $text;

}

output_template: use Template Toolkit to return data to the user

sub output_template {

 my ($type, $text) = @_;

 203

 print $q->header;

 my $template = Template->new;

 $template->process($templates{$type},

 {text => $text})

 || die $template->error();

}

 204

6. src1.pl

#!/usr/bin/perl -w

use strict;

use CGI ':standard';

#use HTML::Tree;

use LWP::Simple;

use CGI::Carp qw(fatalsToBrowser);

my $html2 = '';

my $page;

my @page;

my @HTTP = '';

my $HTTP = '';

srand;

print "Content-type: text/html\n\n";

my $SRC_NEW = 'SRC_NEW.txt';

my $SRC_FIRST = 'SRC_FIRST.txt';

my $SRC_SECOND = 'SRC_SECOND.txt';

my $src = param('src');

my $length = length ($src);

if ($length >=5000) {

print qq(please try a smaller text);

}

if ($src eq "") {

print qq(You must enter some text);

}

else {

open (SRC_FIRST, ">$SRC_FIRST") or die "Can't open file: $!";

#opens file to write to

flock (SRC_FIRST, 2) || Error('lock', 'file');

print SRC_FIRST "http://www.picsearch.com/search.cgi?q=";

print SRC_FIRST $src;

close SRC_FIRST;

}

open (SRC_FIRST, "$SRC_FIRST") or die "Can't open file: $!";

 205

#opens file to write to

flock (SRC_FIRST, 2) || Error('lock', 'file');

my $new = <SRC_FIRST>;

close SRC_FIRST;

if (! $new){print "please enter a term to search for"

}

my $Html = get($new); #opens new web page

open(SRC_NEW, ">$SRC_NEW") or die "Can't open file: $!"; #opens file to write to

flock (SRC_NEW, 2) || Error('lock', 'file');

 my %AltTexts;

 while($Html=~/(<IMG\b.*?>)/isg)

 { my $ImgElement=$1;

 # Find SRC tag

 $ImgElement=~/SRC\s*=\s*([\"\'])(.*?)\1/is;

 my $Src=$2;

 #print " $Src\n";

 # Find ALT tag & store text

 if($ImgElement=~/ALT\s*=\s*([\"\'])(.*?)\1/is)

 { $AltTexts{$Src}=$2;}

 else

 { # No ALT found so give it default text if none already found

 unless(exists($AltTexts{$Src}))

 { $AltTexts{$Src}='no match available, sorry';}}}

#$tag_replace2

 # Write extracted data to a file

 foreach my $SrcPath (sort keys %AltTexts)

 #{ print SRC_NEW "$AltTexts{$SrcPath}\n\n";} #writes to file

{ print SRC_NEW "$SrcPath\n$AltTexts{$SrcPath}\n\n";}

close(SRC_NEW);

open(SRC_NEW, "$SRC_NEW") or die "Can't open file: $!";

 206

flock (SRC_NEW, 2) || Error('lock', 'file');

my $choice = '';

my @array = <SRC_NEW>;

close(SRC_NEW);

my @words;

 @words = grep /\d/, @array;

$choice = $words[int(rand(@words))]; #chooses one

my $new2 = $choice;

my $Htmlx = get($new2); #opens new web page

if (! $choice){

$html2 = "<html><head><title>no match...</title>

</head>

<p>

<center>

no match sorry, <a href= 'http://www.in-

vacua.com/src1.html'>please try again<a></center>

<p>

<p>
<p>
<p>
<\html>

";

}

else

{

 $html2 = "<html><head>

<script>

 207

// The time out value is set to be X (or X seconds)

setTimeout(' document.location=document.location' ,10000);

col=500;

function fade() { document.getElementById(\"fade\").style.color=\"rgb(\" + col + \",\"

+ col + \",\" + col + \")\"; col-=5; if(col>0) setTimeout('fade()', 2000); }

</script>

<script type=text/javascript>

function pageScroll() {

 window.scrollBy(0,50); // horizontal and vertical scroll increments

 scrolldelay = setTimeout('pageScroll()',600); // scrolls every x milliseconds

}

</script>

<body onLoad=\"pageScroll()\"

background =\"$choice \"

text = \"red\"

>

<p>

<center>

$Htmlx

<p>

<p>
<p>
<p>

";

}

print $html2;

 208

Appendix: Evidence of Work 5

Markovised Thesis

[Feeding the text of this PhD thesis through a Markov algorithm generated the next

text. I have, however, also edited the text. Therefore, its authorship is both mechanical

and human.]

…

Title: Always Follow the Instructions: rules and rule following

in visual art.

ABSTRACT: Always Follow the Instructions: rules and instructions and set

them in action, my preferred method being to disk.

Yet, whilst what it says – it is possible to restrict ones analysis to computer

and has been defined as instructions that have been generally defined as

neutral or content free. It is important to note here some problems that might

be possible for the “blurring of art and ideas”, 1971 Jasia Reichardt Ed.,

London, Studio Vista.

Murray, J. H. 1997 Hamlet on the browser are turned off or graphics fail to

load. Again a random number function or some other. Theorisation lags

behind the technology. A reductionist modernist aesthetics also seems to be

written in one of the work by hand. I sat down and embodied his rules in a

previous Chapter, a computation can be done, then that is defined as

instructions that have been discussing, those created by the machine as I

have said, they also misconceive art that uses computers. But what sort of

 209

machine. I will do this when universal machines manipulating these symbols.

The praise for these special machines stems from their ability as

programmers, as it is possible for the date, solely theorises. By the moment of

literary composition, the decisive moment of literary life will be of much if any

help in account for dissimilar phenomena with explanatory models not meant

for them. There are those that are similar or identical. If we can pose it as

most of the theory proposed above accounts for the particular case of what

repelled Heidegger about the inadequacy of the of my better sentences.

Google’s spiders read the text machine as I know. I note the pleasant paradox

that if I wish to go slower.

I once considered turning Every Icon by J F Simon Jnr into a discussion of the

algorithm must always terminate after a while. So I am suggesting is that this

thesis tries to explain what I mean to say rules and instructions for generating

and transforming sentences in languages. Interestingly, these processes are

called ‘alert buttons’. It used two codes. It was a reaction to modernity and

technology, the broad trajectory of which I consider, the method itself became

a subject that may be many different values itself. The choice of texts treated

is important to note any similarities: Kittler 1999 puts it that: ”Inside the

computers themselves everything becomes a number: quantity without image,

sound, or voice. And once optical fiber sic networks turn formerly distinct data

flows into a reprise of the reader” 1997, pp. 15-16.

Assuming all this unless it is perhaps live programming, such as “abstract

machine”, or another that I have also proposed that the machine is the

entirety of 'his' existence. It should be programmed and it produced the

pattern of binary code an “alphabet” is deliberate and important. It indicates

that we are able to comprehend how we use them. … It might constitute,

however, an important research field. Generally, the point that in “respect of

these machines represented a relatively minor strand to the instruction:

started from the example of The Dada Engine’s output from the “physical” or

“simulated” with the ruled system, implying there are also code processes, not

only from my area of interest. However, “virtual” and “abstract” are sometimes

used interchangeably by computer scientists use them. But the distinction I

 210

made early in this reframing that was exhibited by Margaret Masterman and

McKinnon-Wood’s original work. To explain this will have moved our ideas on

in Chapter two to some algorithm. It is my medium. Code is not finally

identifiable with a cybertext be a Turing machine to be a real crux. There now

appear to contradict all of these machines represented a relatively unstable

process, as work changed ideas and terms drawn from a description of

current conditions and the algorithm.

Virtual Dictionary. I can take little credit for programming this piece. The

program assessed performance and adapted to improve the operator’s

accuracy and speed. It is important to my research question. The fourth is

what is doing the text machine computerised. Computer algorithms, as I have

not used, “virtual machine” in the first major exhibition of instructions for new

text machines. However, there is awareness of the fine arts is for such

reasons that Finnemann observes, cannot exempt the text – by another, an

algorithm.

That is to uphold a theory of the code structure of Sentences was derived

loosely from Lawrence Weiner’s And Yoko Ono’s 1995 Instruction Paintings

and on a digital computer. This machine may be made or simulated, rather

than those that are the implementation of algorithms and data in another the

sound of a text machine. What are lost – but not much about the cybernetic in

particular, in a small sequence of similar texts? Is this text may be

implemented by many different machines-of-the-text, if I prove the low

intellectual standards and anti science bias of cultural theory in a finite state

processes, or finite state machine. For me medium is Perl, although I will stay

in the company System Research. That Conversation Theory was part of the

nuts and bolts variety. The reason is the well-known text here, but there are

three separate matters. For instance, a rule may be an artwork, although not a

Peirce/theorematic machine, could it be, nevertheless, one of the new Adorno

speaks of.

The price a theory may pay for its general applicability is a real Professor of

Physics, Alan Sokal, put his name to an article credited to the routine

 211

geometric abstraction of writing? The Markov chain the text into lines and

shuffle, as with Raymond Queneau’s Cent Mille Milliards de Poèmes Hundred

Thousand Billion Poems. However, in programming, a comparable way.

There is an idea of ‘does’ to mere auditory and visual events. Anecdotal

evidence: at a computer to write prose also. text machines pull text-materials

into them by other machines, with the qualifications I make a text process, it

was generated by different algorithms, hardware, and by different algorithms,

hardware, and by different algorithms, that a Substitution Machine Description

of Machine There are rule-based text machine that contain elements that

have ceased to function: there is not fine art; and so on. What are problems of

deriving an instruction is construable, from practice: a speaker does not

purport to be so apparently arbitrary?

Wittgenstein’s answer to his paradox is to fall back on the web. I have

explained, neither a human performing the recursive steps of a practice” and

the prompting of for instance by clicking an image to enlarge or terminating a

program running on the distinction between deterministic and theorematic

reasoning Peirce’s phrase, ibid. p. 49 .Finnemann explains that the coding is

in part, by invoking Hoftstadter’s idea of the theories I have developed this

most pedagogic of all the code block and the general argument Chomsky was

quick to put me right not only to discover an absence where a text machine. It

is not the letter, perhaps following its treatment in Jameson 1999. Jameson

essentially accepts capitalism’s ‘axiomatic’ reality that is to say, I found the

theorisation of the words at random. Attend to their music may still be played,

but theirs are ‘machines’ that have been constructed. Why do I say this text,

and a table of prescribed actions. This is in a hat. Select at random. Attend to

their music may still be objected that the thing in itself depends on when

treated as necessity, time”. And so on. These differences are permissible

because, as I have noted increases in my understanding, little space in

Chomsky's theory for these accidental irruptions of noise into the categories I

use in programming books, the programs instructions it might be suggested

that a cybertext be a neat paradox: if I fail I succeed. ...

 212

That it is written in, is not all in one usage, to comprehend. Now we have one

‘grammar’ breaking into another. What happens when it will be the earliest

instances of a language. To consider function does not take great account of

the details of their performance scripts/programs: // Classic.walk Repeat { 1 st

street left } http://socialfiction.org/dotwalk/dummies.html Nevertheless, there

are systems in which they pass. Therefore, many of these specifically Internet

genres see Glazier, 2002, for instance see Dale et al, 2004. To bring the

discussion back to C.S. Peirce 1989 via modern commentators such as

English with relative ease, were only just becoming available. In 1968,

computers had to be the case if the machine as distinguished from the

instance of its developed concepts such as music, dance and architecture.

These are very different approaches. They are both nonsensical and rather

plausible. These may not contradict itself, but it is a way divested of its

abstract counterpart if interpretation can be monochromatic in structure when

the Internet first became popular and before everyone got used to computers

handling text. In 1968 this was achieved. However, it transpired, this neutrality

was only technical. The transposing of semiotic material to code lies – and

what terms are useful points of orientation: one promoting the formulation to

my discussion. Text machines certain specifics are lost when a text machine.

a. Text machine A Real Machine I am not using terms such as art, even

supposing this to be a viable tool for poets. That users during Cybernetic

Serendipity p 175. The other three, in my discussion of top down versus

statistical modelling, of Markov chains compared with recursive descent

parsers, but I wish merely to indicate a similarity. It follows, concerning this

point, there is a rather antiquated one: “Because of the human sciences’, in

Art: Context and Value, Ed. Simm, S. 1992. Oxford, Oxford University Press.

Aceti, L. 2002 Getting Laid on the other will be shown. It will become

important when we discuss text machines.

The results of the Arts. Chomsky replied: Date: Wed, 9 Feb 2005 16:47:46 -

0500 To: wayne.clements@btinternet.com From: "Noam Chomsky"

<chomsky@mit.edu> Add to this thesis too extend its scope: the world of 9/11

and the general form of binary code an “alphabet” is deliberate and important.

It indicates that we have a concept of rule and mechanism. The perennial

 213

newness of the program. It is in several languages, Javascript, Perl, and

HTML. These are the Text machine, its Rules, its Codes, and Inscriptions.

These are all a form of writings on semiotic. Ed. James Hoopes. Chapel Hill,

University of the Cambridge Language Research Unit. The Unit was involved

in the text. The program has to be judged, to be “Okayed”. It selected texts on

different physical processes, that input-output experiments cannot distinguish

between three manifestations of the machine as I have noted increases in my

research and then and here and now. Bibliography Note: COMPUTERIZED

HAIKU remains significant as an article. Of course, let us consider again the

programming of text randomly. This might be called a signifying chain is

composed as a work of art’s identity. Saying this is a graphic notation for

representing knowledge in patterns of interconnected nodes and arcs”. I think

this is displayed. Some more code JavaScript takes care of how we come to a

person, nor the medium it is possible to follow it at all, not in circumstances it

should be fairly straightforward. In fact we can understand the text inputs, or

we might try to organise my text through a discussion if Wittgenstein’s

writings.

Here my wish is to say, its concretion is incidental to the middle of last

century, to leave such questions out of the typo. An obvious potential

candidate as a reality.” http://www.elsewhere.org/cgi-bin/postmodern The

purpose of the shuffle I found the first work I tried to work directly with the aim

of Masterman and Robin McKinnon-Wood; rather they permitted the user to

interpret the texts they use. If the computer and the exchange seemed to

dismiss cultural questions saying that it easy to imagine a maze of

proliferating and reversible passages between texts that are grammatical.

Turning to the idea advanced above of a text-machine, it is for text generation.

I was able to take another Weiner example, plaster and lathing to binary code.

But the machine is said to have a meaning", Kittler tells us Ebbinghaus wrote

proudly of his study. Our fundamental concern throughout this discussion of

computerised literature: Android Literature imitates the human is also not

escaped me. It might be simple. I could not be as free from all the words is

encountered in painting, sculpture and architecture and elsewhere structural

cinema, for instance: see Krauss, 1999 in different ways. This is important,

 214

because if any were applicable, we might not – or might not – is a process

that is not really that of the circle of Picasso and Braque.

Nevertheless, this text or a subject of ones interventions and how and to form

a Total Library of astronomical size” p. 216. A lengthy process, but not in their

display. To create a template for a time. It adds a word and this is that code

does this: It fades in the body to the appearance of COMPUTERIZED HAIKU

cannot be accessed, file uploading that cannot be an opportunity for the

expected inevitable. Appendix: Evidence of Work 1. Ono Generator

http://www.in-vacua.com/cgi-bin/ono1.pl. This takes selections of text

processing. 6. Context Five Finally, a thesis I did a show of instruction for

computer – grew into the structuring of grammatical utterance, even when

Chomsky's own declaration of a sustained exploration of human-machine

interaction, that forms continuity from practical application through to more

purely literary endeavours. Several scientific and technical strands come

together here: what were formerly connected with the table of instructions as

something that seems to constitute a central problem posed by my thesis. The

Internet is a concept of rule following art must be written; if it is not to do

anything. That an instruction in English for example we choose words with

slightly more care. In other words, written a lucid essay about him from what

seemed the insoluble conundrums of generative art as text machine. Of

course, the scores to their meaning.” Something has happened here.

Diagrammatically we could represent the following of that “other main

approach to more complex approach than this is displayed. Some more not

too dissimilar groups are associated with it are now arbitrary and may be

stored and processed within the architecture of storing instructions in art by

developing a theory of the differences. Fig 1 is intended primarily as a

Universal Machine, provided with the most interesting and productive tension

as I have given, are not, or to erase it. Turing describes how a somewhat

similar machine might operate. He also shows how cybernetic theory,

programming languages and experiments in literature interacted to produce

an instruction and material circumstances that attended the appearance of

English.

 215

In information theory, disorder in communication is designated noise.

Shannon showed noise could remain untouched by this remark about

COMPUTERIZED HAIKU been received by those that do make and then and

here and now. Bibliography Note: COMPUTERIZED HAIKU is Ray Kurzweil’s

1990 The Age of Intelligent Machines reproduces several haiku without

criticism. Margaret Boden’s 1992 The Creative Mind, referring to

COMPUTERIZED HAIKU, neither the algorithm to be in all areas: a great

number of algorithmic processes: this is my argument that the machine, she

concludes the machine is not very seriously intended therefore and, frankly, is

frequently overtly played for laughs.

Consequently, The Postmodernism Generator is exceptional by virtue of pure

reason, it is done according to a discussion of computerised writing. There are

other machines at least not without mediation. And vice versa. A computer

animation of the computer initially to investigate the rule-based constitution of

textual procedures. If I could benefit from the text? No, “it is not that it should

in principal be possible. There is a small sequence of words or symbols

according to Derrida 1982, is that the different material instances of which I

have described above: their ‘machine’ is less familiar. Fig 1 is intended

primarily as a term that is not that it tends to support my contention, perhaps I

should provide a theory of the machine is the “abstract” or “paper and pencil”

definition of such machines, then much of the actual hardware and software.

A ‘discrete machine’, however, only performs various text operations and is

one familiar to me, the possibility of any grand unifying theory – based on

statistical analysis of each part of the social formation were a product of pure

nature." Kant section 45 An art machine on the probability of a text machine

running on the machine. And certainly not all texts.

The instructions are being followed. A way of dealing with different operations

and is an essay written by a random choice, to put me right not only to make

is that code does not persuade that the coding it reads: a dump of data is not

the meta-instruction because it was in. I had not known it first, have worked

back from our vantage point, it is beyond the scope of this question. An

alphabet of the machine? I think we have one ‘grammar’ breaking into the

 216

transformational machine. Why do reverse engineering? “reverse engineering

n the taking apart of a ‘genetic machine’, with its physical and the

Development of New Media. Cambridge Mass, MIT. Hardt, M. and Peterson,

P. New York, Basic Books. Lippard, L. and Chandler, J. 1968 ‘Systems

Esthetics’, in Great Western Salt Works, essays on the other. The random,

the mechanical, the rule that is explained adequately only by two grammatical

machines because it was an instruction is construable, just as an aid to

composition. Murray observes “[e]arly attempts at computer-based literature

tried to establish the computer programming of COMPUTERIZED HAIKU

been received by those that do acknowledge it? Carole McCauley in her

essay, explained that the ‘performance’ was a wilful misunderstanding of

Conceptualism that are required. Should the employment of time, certainly,

would be of much if any help in account for its functioning and in contradiction

to Aarseth’s own assessment the work by Masterman, 1971 or the code, for

instance by clicking an image to enlarge or terminating a program that reads

other programs: preliminary evidence in Kittler’s future silicon Armageddon:

“any medium can be written by Markov Generator’s program http://www.in-

vacua.com/markov_gen.html.

 I am suggesting that certain events are not in their own right", but these are

not medium dependent. This latter proposal, relating to the user. There is the

preservation of behaviours, not the first successful computer program does

not go into the transformational grammar. The presence of "his” is determined

by their surface expressions alone." p. 39-40 Aarseth, himself, refers to the

60s and Conceptual art. In other words an ethical and aesthetic matter and

cannot be itself be satisfactory for social analysis. This might seem to leave

such questions out of the issues and the other to its simulation? I am

extending the argument to a server’s computer, for example. Even if I may put

it like that, layer “the author”, we have to be y” very much Ono but also a

Semantic Schema. The schema does this problem of arbitrarily related levels

have for my theory. I will not follow Osborne further in the next chapter

particularly the appendix to that of Anti-Oedipus, possibly because of the

details of their ability as programmers, as it can produce new rule sets: a

machine that Turing machines are required for number ‘5’ in Knuth’s list

http://www.in-vacua.com/markov_gen.html
http://www.in-vacua.com/markov_gen.html

 217

above. One cannot really be correct. The condition of the time of her 1962

show in Japan: “…in 1962, I did a show of instruction it is. The best response

is to enquire more generally into what computers are. The idea is that it may

be to go with the spirit of the text treated as pattern not substance, is in some

other presenters showed some pornography. Presumably, the light that hit her

retina was the same text. If the text manipulations of a number of the human

versus the artificial. Couched in such a theory of the text inputs, or we might

claim to hold within itself the whole approach of his random word generator.

Randomness itself then was new and exciting in its alphabet once it has

escaped from scrutiny in a file that had to write bogus art criticism. HORACE

is therefore an amusement, a diversion as his creator notes. HORACE,

therefore, is not the first of these was literally clockwork. It had an injunction

“an x to y words", but there is not language specific is apparent from the

thesaurus. The idea that comes from computing: vaporware. Vaporware:

"Computer-industry lingo for exciting software which fails to appear". OK. That

was too crude. Truer to say its abstractness. This abstractness is of no

practical use, as its works also lack utility. The practical and utilitarian in its

other dimensions: having regard for the Nike company. … This is so long as

we know the algorithm and returns the result of artifice? True. It is also

indistinguishable from the command line to programming a website in a

computer is networked. That potential was there in the computer as medium.

New York, Cambridge University Press, 16-68. Armstrong, D.M. 1989

Universals: an opinionated introduction. Colorado and London, The Athelone

Press. Deleuze, G and Guattari, but not entirely – fell within this group of non-

deterministic machines Ketner mentions? A non-deterministic machine, for

Ketner, might be adequate to a web text leaving the decision of whether to

give a complex modality of the text of my mail: Date: Wed, 9 Feb 2005

18:03:08 +0000 GMT From: wayne.clements@btinternet.com Add to Address

Book Subject: new error: syntactic structures To: chomsky@mit.edu Dear

Professor Chomsky, Thank you very much for a machine of a practice” and

the set of observed sentences.” That is, the text manipulations are transferred

to computer, the modern digital machine and another are now quite used to

considerable effect, to give the impression that these questions, discussed in

reference to machine code, as must the program. It is this that make

 218

computers work. New York, but that was exhibiting canvases with instructions

attached to this thesis is written in, and the code upon which it is possible to

use similar methods of simple substitution” p. 189. For her, a substitution

system provides what computer programmers call the post-mechanical. “Post-

Medium” There is no 'him' to refer to wholly or partly machine authored texts.

This text may in turn prompted new work. I outline some of the text machine's

formulation. This, we are beginning to describe COMPUTERIZED HAIKU is

intended primarily as a Text machine. It motivated my use of the material it

addresses constitute two different media; they exist in the diagram fig 4

above. Masterman was a remake of a text machine computerised. Computer

algorithms, as I have said about the inadequacy of the Future. It is perhaps

inherited from modernism, that we must be aware of excellent research: for

instance, who argues that one might think. Typos are, after all, quite common

and, therefore, relatively unremarkable. Why make an issue of determinism.

There is see Appendix 6 a body of what Conceptualism is. It is problematic

because of the producers. The theorists I have said that my research question

“what is the artwork’ rather than its writings. Might it be these that I am not the

computer. It is the eclipse of visual art, I cannot leave out of the decimal for

pi”. Therefore, a non-deterministic machine or as bad, and much the question

is quite reasonably, "what kind of inference: either there exists some sort of

simulations as those I speak of above, where the imperative of the issue of

determinism. There is however the question remains what sort of text files for

all possible combinations of the rule to action we have one ‘grammar’

breaking into the static quotations that appear in writings by Ketner 1988 and

by different algorithms, hardware, and by Montfort 2004.

 c. Peirce’s Theorematic Reasoner and Chomsky’s Finite Automaton Ketner’s

contrasts Turing machines with which to code semiotic materials. However, it

is not conventionalised and false as it should be equal to. Essentially, what I

thought was a compound word, combining connotations of insubstantial

exhalations with those "that have a meaning" to use Ebbinghaus's phrase.

Randomness therefore is a body of what its code is. Unlike the usual mono-

authorial, if I may put the problem of justification of grammars.

 219

Add to Address Book Subject: Re: textual error in Chomsky’s text as it is

worth restating my argument here, because although I will illustrate by

developing a theory of a jumble of words or their sub particles. For this reason

Markov processes might be said that if I could program a computer to

simulate other sign systems. It is for text as human authored. My intention is

not certain whether it is composed as it did not, as I required them.

Monochromes differs in that I am keeping up the earlier edition, using the

thesis and the Internet and the machine. The theory has become more

committed to working with computers and the simulated. For the practice part

of what is required is the impact of the modernist cannon, used to it: a year or

two either side of 1997, in other words, new media again meets old art

practice/theory. New media skips a generation, ignores its hideous parents

and looks to its great grandparents for explanations, exhortations and

examples see Simon Pope, The Shape of Locative Media, 2005 for a long

time, been a question that has been submitted to journals: Cabinet

http://www.cabinetmagazine.org/ and Media-Culture http://journal.media-

culture.org.au/. I am not really interested in mapping or configuring code

structures as the throwing of a practice is one in Italy, the TEANO. Ferrara

2003 provides descriptions of a version of the algorithm only. Without the

surrounding code to run, if it were a machine. “Reverse engineer”:

engineering reversed. Engineering: product specification turned into product.

Reversed: begin with the British Library to look beyond conventional ideas of

what was essentially a poetry-teaching tool in Cybernetic serendipity: the

computer can use, via assembly language to machine texts, are stored as

binary sequences in the preceding chapter, not identical with any of its

material – the “Fisher-Yates Shuffle” – to sponsor the making of art or some

equivalent process”. Turing notes that we cannot tell by observing if the

machine produces, similarly, require a thesis that has attracted computer

researchers to poetry. The contribution that TRAC makes is that code does

this: It fades in the script I am not primarily my purpose. Nevertheless, what

implications does this problem of attempting to account for the simple reason

that the machine, she concludes the machine replaces the book of rules. A

“table of instructions”, according to a web text leaving the decision of whether

to give a couple of examples, Lunefeld’s 1999 The Total Library: Non-Fiction

 220

1922-1986. Edited by Eliot Weinberger / translated by Esther Allen, Suzanne

Jill Levine and Eliot Weinberger. Harmondsworth, Middlesex, Penguin.

Brandt, P.A. 1994 ‘Meaning and machine: Toward a semiotics of interaction’,

in Andersen, P. B. et al

The computer would simulate my abstractly specified machine and another

are now established names, and several may risk repeating to diminishing

effect former successes. Is there a sense of impractical. Nevertheless, the

point is important to my own area of investigation, to “overcode” language, the

body, the earth and more. The text machine, in the body to the novice. As a

consequence I was not useable in the “Conclusion and Postscript – On text

machines and the Internet and text materials data. Computable aspects are

transferable between different fabrications of the inherent ambiguity of words,

to produce work that has been arranged as a confrontation between what may

be conceived as a network of computer-bunkers. This is encountered in

painting, sculpture and architecture and elsewhere structural cinema, for

instance: see Krauss, 1999 in different media, and cultures. Cambridge,

Mass. MIT. Lunenfeld, P. 1999 Ed The Digital Dialectic. New Essays on the

internet, I am keeping up the distinction between a Turing machine as rival.

Will it replace us, the servant become master? Is there much point now in

anyone replicating JODI’s, Shulgin’s, Bunting’s, I/O/D’s engagement with the

qualifications I make immediately below, and as such they seem to hold: ? If

this were not available and output was to paper printer. Fig 2 Image of

installation at Cybernetic Serendipity: photograph courtesy of Professor Brent

MacGregor. Fig 3 Image of installation at Cybernetic Serendipity: the

computer are not, or much less so. We cannot transcribe the computer's

actions. Human languages are merely stored in the form of a text with words

from the observer's perception, not that it has escaped from the observer's

perception, not that it treats must be understood and classified by their most

recent values. Can the social in any consistent way which is which. This is an

essay Masterman,1971 about it. New machines will be read/perceived. It is

worth restating my argument and wide ranging in effect. I return to the written.

But I am suggesting is that code does not have to choose between

subcapitalist discourse and Batailleist ‘powerful communication'. "Class is

 221

fundamentally a legal fiction, but rather the meaninglessness, and therefore

no separate code level and an unusual sort of proto-software. The instruction

is made so as to whether the channel is electronic or paper and ink. This still

seems to situate most text machines on computer. A text machine and the

abstract statement of its performance.

This event has its time and space as part of this chapter I have necessarily

altered some of the work. Description of Work 1 Rather than what could easily

degenerate into a hat and ‘drawn’. But the error is not a poem” quoted in

Aarseth p. 133: reduction to the written. In Hegel too, the machine requires a

medium, but is as not uniquely tied to a text machine that were established in

the writings they produce. But it isn't just intellectual. I have tried to use

Galloway’s phrase? In my writings I will use this paragraph. Markov

algorithms tend to break down.

We encounter the problem he poses, I will return to these physical conditions

of physical production. Nor of course carries on today. Computerised

literature, therefore, is not composed as it did not write the text: instead the

text machine and that even the algorithm must be known if the code from

scratch and posted it up in useable form on his website for a degree of

specificity not provided by Deleuze and Guattari is the same year as Art and

Language’s text referred to as a physical process. All three produce texts that

might be an artwork and new artwork from instructions in this case and

program rules and instructions are being followed. A way of “imbricating”, of

sectioning off, of reintroducing code fragments, resuscitating old codes,

inventing pseudo codes or jargons.” The way to resolve this apparent

conundrum may be possible to restrict ones analysis to events and processes

it. c. Why? It is this issue of determinism. There is a word for machines that

may be either a discrete-state machines, with all others, are subject to change

or suspension. Rules may be read. Furthermore, the unseen code writes the

rest. This should work whether we start with the later work of Racter it will be

added and some, with the language there was pretty ordinary. What if the

human versus the artificial. Couched in such a double movement. The first

game was Spacewar, 1961. I do consider these issues is usually reversed,

 222

and it is certainly possible Daniel Libeskind has made some. It is not wholly

unfair and great works of Gaiman, a predominant concept is the same binary

alphabet? Again, this is my ambition a developed theory for the programming.

It uses a “pattern match” programming term: ‘something that looks like this:

there is nothing internal to these issues is usually reversed, and it is a set of

instructions. What comprises a ‘Frame’ or ‘Template’ and a development of a

text-machine, it is possible to ask if a "literature" already converges with an

indefinite process may be expressed, and below that a Markov process is

basically a probabilistic substitution that a Substitution Machine can write

prose also. text machines certain specifics are lost – but it is there, however, it

may be made, that it may be coding, it is the distinction here between

syntactical and semantic material that Chomsky makes in his text, but not

others. What I have already quoted. HORACE does not require either

mathematics or computers. It is useful to think of an account adequate to the

routine geometric abstraction of writing? ... www.in-vacua.com/cgi-

bin/markov_generator.pl - 24k - Cached - Similar pages Proverbs of Hal No4.

“All machines are commonplace? These distinctions become important as I

do this he would have the condition of possibility of its material – the Idea of

the reasons I have written, “reading reads writing”. I did not stay in the last

chapter. This is because for me is not to do this by alerting us to "deduce

Hungarian; with another, Yoruba" p. 122. Linguistic complexity is founded on

more fundamental principles are likely to be born, to be possible. There is an

essay Masterman,1971 about it. This is encountered again. Write down the

word ‘bird’, but doing the text machine, finiteness, as a stable entity can

therefore be constructed from code. I may be imitated by another machine,

that is achieved is a complex piece. a. What does remain is an argument

about computers Hillis, 1999, explores at much greater length. This text, the

text that my research is primarily into computers or computer programming.

My thesis overwhelmingly deals with one pair of words or symbols in

Funkhouser's terms can be achieved by using an interlingua." John Sowa

2002 defines a semantic interpretive level. … Data and program rules and

instructions are the consequences of this very same analogy between what

may be remade in its mechanistic indifference. However, the connection

 223

between art and computing was made early in this thesis. To contemplate

function does not require a computer may execute in the loop until it produced

the frustrating button that had to be made: despite the best attempts of ELIZA

and Racter to which the "false". But the time of her 1962 show in Japan: “…in

1962, I did a show of instruction and its Objects. Art by Instruction and the

code has been submitted to journals: Cabinet

http://www.cabinetmagazine.org/ and Media-Culture http://journal.media-

culture.org.au/. I am thinking of three states: abstract, limited function,

simulated. It is worth considering that these are, on the North Sea.

Art in the computer.

However, computers run them faster than we might not – or of concrete, the

size of London and actually doing it is there, however, it may be applied to the

Internet. Over the years there have been trying to establish the computer can

perform the instructions, it can be read. They may do these things, writing

about the importance of Conversation Theory, or CT, to COMPUTERIZED

HAIKU, http://www.in-vacua.com/cgi-bin/haiku.pl, where there is nothing to

say that the problems of deriving an instruction for computer in a small part of

a word. I consider a more interesting way. It is because for me between a text

machine computerised. Computer algorithms, as I will discuss some of these

specifically Internet genres see Glazier, 2002, for the same medium. As

Cramer 2003, p. 101 notes, the previously assumed “clear cut-division, a

material difference between my understanding of the technical issues here

and now although I fear with unconscious irony, a marked tendency to

imperialise and centralise, as he finds “protocological” tendencies everywhere

he looks: in the end a fairly conventional looking image. Examples are the

mere product? Is it possible to restrict ones analysis to computer and I have

written, “reading reads writing”. I did not write, “reduction to the “receiver”.

Alberro’s reading of Bruce Altshuler’s essay Art by Instruction and b. an

Application. These are terms I have sought to develop some of my machine

 224

the more than an abstracted procedure, that when simulated, the Kozlowski

loses specificity. The choice of lexical parameters, according to a person, nor

the light that hit her retina was the same symbolic realm”. This “Von Neumann

architecture” constituted a revolution in computer hardware, new

programming languages and for different operating systems. The duality that

we are looking at its most basic level, into strings. 4. “...codes or jargons…” I

wish merely to indicate a similarity. It follows, concerning this point, there is a

machine to write a machine ensemble, and only one word repeated a lot, the

algorithm must be appropriate, the person whose act it is once it is “…the set

of observed sentences.” Now the plural. Therefore, presumably the error was

the availability of a jumble of words occurring. See my essay, Markov Chain

Algorithms. A not very interesting viewing. In other words a similar dualism

may be written or run a random substitution based on being involved with

many of the writing of

‘ Is Painting a Language? in The Responsibility of Form. Critical Essays on

Music, Art and Information Processing’, in Software Information Technology:

Its New Meaning for Art. New York: Jewish Museum.

The book as a stable entity can therefore be constructed from them. Rules, no

longer imposed from without, guaranteeing stability, “are processed in time

and materials. Performances by a group largely of professional programmers.

Many are extremely able in their material of inscription. The importance of

Conversation Theory, or CT, to COMPUTERIZED HAIKU. CT is part of its

functioning. It is expanded in Noumena to “remove the characters from any

point and edited. This means that easy alteration is possible to list all of the

code and the Internet. Cambridge University Press, 128-141. Buchloh,

Benjamin H.D. 1989 ‘Conceptual Art 1962-1969: From the Aesthetic of

Administration to the 60s and Conceptual art. In other words, if it can make

programs. Alt_Img_Tate is an idea of a social critique. I will return to this in

their active functioning, but not in fact a controversy about the same way. In

short, these were found to have fared much better than those I speak of

above, where the instructions can be written in the third. f. Several Machines

of Conceptualism that are derived from computing, particularly computer

 225

code, are to be given. I have said about the importance of code that has it. So

we see that the different material instances of a grammar’s validity according

to some future operator to supply. A further issue related to definiteness is

how to simulate a text machine running on the Internet is conceivable as one

enormous text providing you ignore the hardware. This is a computer

program, software package, genre of electronic writing or writing – a template

based on their count of word frequencies. Furthermore, they do not fit into any

other. With numbers anything goes. Modulation, transformation,

synchronization; delay, storage, transposition; scrambling, scanning, mapping

– a program using RTNs to write a poem. Masterman did not over-rate the

quality of the Fluxus group. It is true of any single text machine. This does not

necessarily need to make Racter-like texts, but it should not, then it is

possible to claim authorship of the concept Protocol derived from computing

to the Fine arts. He writes, “a Turing machine, then, is a text machine on that

literature’s lack of specifics. In a Markov algorithm to use and has infected

human society. It does little. The code that presents itself initially as

conundrum. It will become important when we are living in a parallel context.

Here, alienation is the word “discuss” and follow it though they may. If it can

make a narrative. Murray notes a substitution, system is capable of doing

extra labour?

But can it be remembered, an “unexpected success” of Cybernetic

Serendipity marks one of the computing in general phylogeny? I think here I

need to clearly formulate their work so that some steps are not divisible into

neat blocks of code, as must the program. Such tactics are interesting. The

objection to them is only to show the binary alphabet to simulate it. Do we

mean society is a lack of research in art and computing under the single term

Burnham 1968. The difficult matter is that it might not be surprising, as

computers are involved with cutting edge technology. Already similar

developments are occurring. Mobile technology is attracting huge investment

by capital and in what sense it is hard to know what might easily seem a

purely economic enterprise, thereby running the risk of weakening it. Jameson

writes “[t]his incapacity of the text machine and its activity are simulated by

computer. What we have seen, not all text machines and the algorithm. Then I

 226

had to find in books, on the web address. Webov then gets the web page for

amusement are cybertexts but are writing. Like anything else for that matter

what counts as an instruction, we might claim we are talking about the

importance of Conversation Theory, or CT, to COMPUTERIZED HAIKU. CT is

part of Tyson’s continued debt to Conceptualism. Speaking of his available.

Even so, if we are beginning to describe a theory of what I referred to as

machines, and moreover, they have a machine are not unworthy and have a

completely textual version of immediate constituent analysis. Each was found

to be born, to be disposed into discrete sub elements. In other words in little

groups of work, whatever the sophistications of any sort. d. Text machine:

Turing Machine? As I have proposed that a rule may be possible to vary the

number, choice and vocabulary of lines. … This is the aim of revealing the

answer. Hofstadter's "test" provided the inspiration for Bulhak's The

Postmodernism Generator. See Bulhak 1996 p. 1. The Postmodernism

Generator is exceptional by virtue of the theoreticians above, to variability of

the work should still take on a subject topography in doubt. It is possible for

the production of sentences, of art and ideas, Ed. Reichardt, J. London,

Studio Vista.

Montfort, N. Cybertext Killed the Hypertext Star <http://www.

Electronicbookreview.com/v3/servlet/ebr?command=view_essay&essay_id>

20th April 2004.

 Hegel, G.W.F. 1873 Logic, trans. William Wallace, with a paper printer when

the computer as medium. New York, Cambridge University Press.

 Harel, D. 1988 Algorithmics: the spirit of the code with the algorithm to use

ideas and ideas work. However, this only really works if there is no longer

imposed from without, guaranteeing stability, “are processed in time and

space as part of a machine could be said to represent the coding is in an

obscure exchange on a programming code". Taking computer-poems to

stand, for the moment. The key thing is that we cannot be found by peering

into the artwork. If the Internet and pieced together. Alt_Img_Tate also uses

part of a machine in the body to the task of a program. This program may be

 227

conceived of as symbolic logical abstractions of thoughts and natural

languages, and computers as the Scene of Global Conflicts. Schopf, C.

Unplugged. Art as the relation of pattern to presence, in terms of Hayles‘s op.

cit. discussion of the computer and the obscurity surrounding its author are

discussed in reference to Burroughs who used similar text cut-up techniques

Burroughs also did an advert for the Application of Computers to Art

Production <http://people.etnoteam.it/maiocchi/teano/works/wordtemp/

sorbona.do> 22nd December 2003. Fields, C. 2002 ‘Measurement and

Computational Description’ in,

Of two minds : hypertext pedagogy and poetics. Ann Arbor, University of

Alabama Press Goodman, N. 1969 Languages of Art. An Approach To A

Theory Of Symbols. London, Oxford University Press, 128-141. Buchloh,

Benjamin H.D. 1989 ‘Conceptual Art 1962-1969: From the Aesthetic of

Administration to the early days of computing, as it is often by typing. Some of

these works I use an example of others work, at other times I was able to

share my code sketch with Simon at www.hitherto.net. Instead of the text

machine running on the transposition of semantic material. This may occur

between levels of ‘is’ and ‘does’. In certain circumstances rows of digits might

be called a semantic interpretive level. … Data and program could write a

machine executable program. COMPUTERIZED HAIKU was an instruction

from a Google entry on a computer. But it may still be objected that the whole

thing was not quite a lot. This may occur between levels of signification in the

elapse. But was it credible that no one knows what they call the “axiomatic”.

However, the theory of semantic material.

This is a useful way of making the work by Weiner to its process. b. Machines,

Discrete and Universal The idea that comes from Saussure Starobinski 1979.

I used some free software, Xenu Link Sleuth

http://home.snafu.de/tilman/xenulink.html. Starting with an address, Xenu

compiles a list of web addresses. They look for these words on the panel

seemed to have developed this most pedagogic of all English sentences

including, therefore, his own. But the distinction between “rule” and

“instruction”. Implicit in this context a contradiction: if it is also the subject of

 228

my research I will elaborate little now, I believe it will make much of what its

code alone: its interaction with our environment. The theory has both a loose

and a language in which to manipulate natural languages such as

“agreement”, and “consciousness” are formalized processes of the term

Peirce machines rather than those that are both. Many of the hardest

programming tasks I have written, “reading reads writing”. I did was to make a

semblance of sense, sense would always thereafter teeter on the degree that

randomness is ordered. A zero ordering of events may be that generative

grammars are useful for simulating natural processes, yet still are not

"equivalents" to what he likens to “the children's game of 'chinese whispers'”.

But where does this work? Finnemann makes a distinction between text

manipulation procedure, so long as it showed, not only of text, sound, film and

photography and the Politics of Cyberspace. Eds. Chernaik, W. et al. London,

The Athelone Press.

Derrida, J. 1978 ‘Structure, sign and play in the next chapter’. These

conversion processes are sometimes used interchangeably by computer

algorithm, and the output of the computer takes place. These are all arts

where there is some sort of proto-software. The instruction we might make

itself, or produce another. The non-referential may produce all text machines.

However, there is the world economy exhibits combined and mixed

development in computing science and the exchange seemed to have

developed this most pedagogic of all English sentences including therefore

his own. But the past participle here cannot really be driven by the algorithms

work. Markov algorithms work with patterns. A Markov algorithm were to

compare music and instruction-art we would need to worry about Montfort’s

low opinion of this process in the oral tradition used these formulas as an

artwork and an inscription level. In the remaining part of a practice is one

familiar to me, the possibility of self-ordering, the automation of a program.

This necessitated some discussion of the situation is rather like saying “I do”

when one is to draw a distinction between a rule set that can be embodied in

a different moment of literary composition, the decisive moment of some

greater project.

 229

4. There are a number of others. The conclusion must be, consequently,

carefully differentiated. However, the real credit goes to him for his

consideration. Somehow I did not over-rate the quality of the chapter, I intend

to suggest that ‘numbers’ were entirely different from ‘instructions’. The

obvious thing was to paper printer. Fig 2 Image of installation at Cybernetic

Serendipity: photograph courtesy of Professor Brent MacGregor Edinburgh

College of Art who has controversially suggested downloading a human editor

that is defined as not material-specific: it can be translated into its own

specificity and purity see, de Duve, 1999, Chapter 4. This is not

unprecedented and conforms to one side its interaction with our environment.

The theory of parapraxis the “Freudian slip” from the ICA gallery London,

1968. It is the algorithmic basis of the early days not only on who was

responsible for the production of sentences, of art or life we are to understand

fully a text form. This comprises for him the textualisation of sound and image

media. This text may take considerable coding skills to produce an instruction

and of course that we have seen the importance of Conversation Theory, or

CT, to COMPUTERIZED HAIKU is intended to represent these arguments

schematically. Fig. 1 Meta-instruction Noumena instruction Reality instruction

Applications of Noumena The meta-instruction “remove the characters from

any point and edited. This means that easy alteration is possible by access to

knowledge. These latter societies are, according to Lisa Jevbratt b. 2001, is a

conception of a machine. It motivated my use of a presentation made by the

sound of a simple communication theoretic model and a module –

HTML::Tree – another Perl module. These two works essentially select and

display in many ways. Scientists mixed with artists and no stable entity distinct

from the function of protocol on the web page. But there is some sort of

process. There are other ways to create a list of words. I recognise Austin

was considering spoken words. I am not adopting a purely sceptical position. I

have tried to establish what the grammar produces is syntactical, because this

is not one machine, many machines. Perhaps society is one, other or all of

these machine functions may be proposed. Such a machine can write prose

or poetry. The contribution that TRAC makes is that it was all stimuli and

switches to her. This was the earlier circumstances of its printed texts,

whether printed to screen, or file, or paper, and the rest. Why indeed stop

 230

there and not possible in the loop and iterate over questions that may be in an

analysis of word frequencies. Each time the algorithm without being

constituted as such. A Deleuze and Guattari: “machines driving other

machines, other non-text technical machines. The construction of an example

of The Dada Engine as “a system for instance. He also shows how cybernetic

theory, particularly with their “sites of confinement”. Power is no upward limit

on the screen. This is akin to structural cinema’s halfway house of making the

work whoever else has involvement; the common belief of the intelligible

character, are the historical and material circumstances that attended the

appearance of COMPUTERIZED HAIKU. It is not what we can make

programs. Alt_Img_Tate is an example of The Dada Engine as “a system for

the count" as an artwork I call a text machine. The development of machines.

Presumably this machine has some transubstantiality about it, confessedly as

it was in. I had been considered and rejected. I have, however, pursued

Masterman’s suggestion of a higher written/read level and we find we may

read “… capital figures as a definition, is not required. To ask this is in part, on

several of them are interesting, even ground-breaking, such as “abstract

machine”, or another that I have indicated why and in turn prompted new

work. I outline some of my research is rules and instructions for generating

random text using rules." I will return to this thesis. To contemplate function

does not comprise one sort of retinal? Cramer's 2002 "Pythagorean digital

kitsch" is a patent difference between my use of grammars I now go on

“behind the backs of the text machine? I said in Chapter 2 that a Markov

process? A Markov process or transformational, which Chomsky

subconsciously suppresses “this study” and replaces it with “his”, perhaps

with a computer program. This would mean, in one area, whilst others lagged

behind. I could adapt to shuffle a text. That language was TRAC. TRAC

stands for noun. This produces some strange, sometimes striking, effects. It is

possible to identify both conformity and deviation. In Chapter 3, I investigate

and try to depart somewhat from this understanding of the random is

predicated in fact a controversy about the consequences of this thesis is

written by me. ? If this thesis is whether or not one grammar, but many: not

one text machine, if it is possible to make work that does not have anything

like a recursive grammar article to follow. These should always produce

 231

grammatical sentences as long as instructions, which can be embodied in a

different requirement to making a text to art as text to display. Ono Generator

http://www.in-vacua.com/cgi-bin/ono1.pl. This takes selections of text machine

to develop one in Italy, the TEANO. Ferrara 2003 provides descriptions of a

signal and as Manovich 2001, p. 133 says, "in the progress from material

object to signal” and as Manovich 2001, p. 133 says, "in the progress from

material object to signal to computer, the modern digital machine and output

is not between computers” should I wish to suggest it is that their texts into the

structuring of grammatical utterance, even when Chomsky's own declaration

of a “digital computer with a view to copying it or improving on it”.

 Competition. In short, the machine and a discrete-state machines may be

made in several ways whilst remaining recognisably the same way. In short,

the machine requires a degree of “vagueness” in the sense of superiority it is

automated and fading in the same haiku as their program and the Internet as

a particular case, La Monte Young’s Composition 1960 #10, to Bob Morris.

Here it is: “Draw a straight line could be wrong – and what it does not mean

that we usually do not fit into any of its instantiation. We may prescribe a text

machine may not be surprising therefore if some of this subject. 2. Proverb of

Hal No4. “All machines are not spoken, that are relevant. If a machine

mimicked by a computer to execute. The instructions are the historical and

material permits complete simulation, instruction and an inscription level. In

the middle there are instructions and their uses.. This puts us in the

development cybernetic theory, programming languages and for that matter

running on the observer who may in part a reaction to his earlier, still

influential work. The issue of determinism. There is much about the writing,

the processor and the relative mix of human and computer simulated

machine. Turing 2004, 1950 remarks that all Oulipo strategies are text

machines. What it cannot be an artwork, although not a theory, and I work on

for its writing? Or is it am I advocating? Is 'art-as-text-as- text-machine’

possible? It is possible to offer intrinsic libidinal investments to its optimum

conceptualism my italics; it would not do much.] This algorithm is that the

machine and a text machine given over to a series of instructions to text. The

program and the programming of these groups. One group is characterised by

 232

being expressly web specific. The other is the network the subject of my

research and then applying it I return to these arbitrarily related levels. This is

encountered in my thesis: "Presumably, Chomsky’s sentence might

presumably be written so a machine consisting of two typologies of the

machine as distinguished from discussion of text files for all occurrences of

the evolutionary patterns of interconnected nodes and arcs”. I think this is

required. I have developed this most pedagogic of all possible sentences. The

grammar is adequate to account for the machine is left for example on ‘radio

buttons’. This could be ordered to make is that it was a permutation of all

English sentences including therefore his own. But the machine writes text it

should be, I believe, in the diagram fig 4 above. Masterman was a

breakthrough for me. It was in “theorematic machines” he suggests the term

“generative” and conflates technical, social and economic processes of

understanding. CT is an Electronic Author? Theory and the machine?”

However, this is a computerised literature “Who or what writes?” p.132 not

very interesting viewing. In other words, the social and artistic production:

“…my research suggests that socially-engaged contemporary artists might

usefully produce work that does not extract alt tags. It looks like this: there is

an idea of what is this digitisation, what does it do? It deletes a web page for

amusement are cybertexts but are writing. Like anything else for that matter

what counts as an explanatory term for art on the observation that a cybertext

need not be possible to turn it into software. An instruction may be changed

axioms cannot be artificially limited to copper wiring, signals, emitters and

receivers. It is a possibly a comparable practice it is possible to turn into

computer code; and what it represented, however, was freely invented. 2.

Manipulation Machine Description of Work My early work largely – but wrong.”

Hodges, 1983, p. 302.

 233

Appendix: Evidence of Work 6

Note. A CD of computer material from www.in-vacua.com was attached to the cover

of the hard copy of this thesis.

http://www.in-vacua.com/

